$\mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}$ Complexes at the Localized-to-Delocalized, Mixed-Valence Transition

Konstantinos D. Demadis, ${ }^{\dagger}$ El-Sayed El-Samanody, George M. Coia, ${ }^{\ddagger}$ and Thomas J. Meyer*
Contribution from the Venable and Kenan Laboratories, Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290

Received August 6, 1998

Abstract

On the basis of the appearance of $v(\mathrm{~N} \equiv \mathrm{~N})$ from 2007 to $2029 \mathrm{~cm}^{-1}$ in $\mathrm{CD}_{3} \mathrm{CN}$, oxidation states at Os in cis, cis-[(bpy) $\left.)_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]^{3+}(\mathbf{4})$, trans, trans-[(tpy) $\left.(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpy})\right]^{+}(\mathbf{5}),[(\mathrm{tpm})-$ $\left.(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})\right]^{+}(7)$, and $\left[(\mathrm{Tp})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{Tp})\right]^{-}(\mathbf{8})$ are localized. For $\mathbf{5}$ this conclusion is reinforced by the crystal structure of the BF_{4}^{-}salt, which shows that the Os sites are unsymmetrical. Five narrow, solvent-independent bands appear in the near-infrared. They can be assigned to a combination of intervalence (IT) and interconfigurational $\mathrm{d} \pi \rightarrow \mathrm{d} \pi$ transitions. From integrated band intensities the magnitudes of the resonance energies from electronic coupling across the $\mu-\mathrm{N}_{2}$ bridge vary from 1500 to $2500 \mathrm{~cm}^{-1}$. Intramolecular $\mathrm{Os}^{\mathrm{II}} \rightarrow$ Os ${ }^{\mathrm{III}}$ electron transfer is rapid on the time scale for solvent reorientation, but a barrier still exists from low-frequency, coupled $\mathrm{Os}-\mathrm{Cl}$ and $\mathrm{Os}-\mathrm{N}$ vibrations.

Introduction

In the known mixed-valence $\mu-\mathrm{N}_{2}$ complexes of Os there is evidence for delocalized oxidation states. Examples include $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Os}\left(\mathrm{N}_{2}\right) \mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}\right]^{5+},{ }^{1}\left[\mathrm{Cl}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Os}\left(\mathrm{N}_{2}\right) \mathrm{Os}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right]^{3+},{ }^{2}$ and $\left[\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Os}\left(\mathrm{N}_{2}\right) \mathrm{Os}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{5+} .3,4$ In all three, the absence of a $v(\mathrm{~N} \equiv \mathrm{~N})$ stretch in the infrared points to an averaged electronic environment across the $\mu-\mathrm{N}_{2}$ bridge. There is further evidence for delocalization in the X -ray crystal structure of $\left[\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Os}\left(\mathrm{N}_{2}\right) \mathrm{Os}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{5+}$ in the equivalent coordination environments at the two metal ions.

In this paper we present experimental data for a series of mixed-valence, $\mu-\mathrm{N}_{2}$ Os complexes showing that they have properties commonly associated with both localization and delocalization, but that there are localized $\mathrm{Os}^{\mathrm{III}}-\mathrm{Os}^{\mathrm{II}}$ oxidation states. They are examples at the mixed-valence, localized-todelocalized transition.

Experimental Section

Abbreviations used in the text include the following: TBAH $=$ tetra-n-butylammonium hexafluoro-phosphate $\left\{\left[\mathrm{N}(n-\mathrm{Bu})_{4}\right]\left(\mathrm{PF}_{6}\right)\right\}$, tpy $=2,2^{\prime}$: $6^{\prime}, 2^{\prime \prime}$-terpyridine, bpy $=2,2^{\prime}$-bipyridine, tpm $=$ tris(1-pyrazolyl)methane, $\mathrm{Tp}^{-}=$hydrido tris(1-pyrazolyl)borate anion, $\mathrm{Fc}^{+}=$ferrocenium cation, $\mathrm{pic}=4$-picoline, $\mathrm{pz}=$ pyrazine, $\mathrm{IT}=$ intervalence transfer, and MLCT $=$ metal-to-ligand charge transfer. Ligand structures are shown in Figure 1.

The following compounds and salts appear in this study: trans-$\left[\mathrm{Os}^{\mathrm{VI}}(\mathrm{tpy})(\mathrm{Cl})_{2}(\mathrm{~N})\right]\left(\mathrm{PF}_{6}\right)(\mathbf{1}),\left[\mathrm{Os}^{\mathrm{VI}}(\mathrm{tpm})(\mathrm{Cl})_{2}(\mathrm{~N})\right]\left(\mathrm{PF}_{6}\right)(\mathbf{2}),\left[\mathrm{Os}^{\mathrm{VI}}(\mathrm{tpm})-\right.$ $\left.(\mathrm{Cl})_{2}\left({ }^{15} \mathrm{~N}\right)\right]\left(\mathrm{PF}_{6}\right)\left(2^{*}\right), \mathrm{Os}^{\mathrm{VI}}(\mathrm{Tp})(\mathrm{Cl})_{2}(\mathrm{~N})(3), \mathrm{Os}^{\mathrm{VI}}(\mathrm{Tp})(\mathrm{Cl})_{2}\left({ }^{15} \mathrm{~N}\right)\left(3^{*}\right)$,

[^0]
tpy

bpy

tpm

Tp

Figure 1. Ligand structures.
cis,cis- $\left[(\mathrm{bpy})_{2}(\mathrm{Cl}) \mathrm{Os}{ }^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]\left(\mathrm{PF}_{6}\right)_{3}(\mathbf{4})$, trans, trans-[(tpy)$\left(\mathrm{Cl}_{2}\right)_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $\left.)\right]\left(\mathrm{PF}_{6}\right)(\mathbf{5})$, trans, trans $-\left[(\mathrm{tpy})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left({ }^{15} \mathrm{~N}_{2}\right)-\right.$ $\left.\mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpy})\right]\left(\mathrm{PF}_{6}\right)\left(5^{*}\right),(\mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})(6)(\mathrm{tpm})-$ $(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left({ }^{15} \mathrm{~N}_{2}\right) \mathrm{Os}^{\mathrm{I}}(\mathrm{Cl})_{2}(\mathrm{tpm})\left(6^{*}\right),\left[(\mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{H}}(\mathrm{Cl})_{2}(\mathrm{tpm})\right]\left(\mathrm{BF}_{4}\right)$ (7), $\left[(\mathrm{tpm})\left(\mathrm{Cl}_{2} \mathrm{OS}^{\mathrm{III}}{ }^{15} \mathrm{~N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})\right]\left(\mathrm{BF}_{4}\right)\left(7^{*}\right),\left[(\mathrm{Tp})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right)-\right.$ $\left.\mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{Tp})\right]\left(\mathrm{Cp}_{2} \mathrm{Co}\right)(\mathbf{8}),\left[(\mathrm{Tp})(\mathrm{Cl})_{2} \mathrm{Os}{ }^{\mathrm{III}}\left({ }^{15} \mathrm{~N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{Tp})\right]\left(\mathrm{Cp}_{2} \mathrm{Co}\right)$ $\left(8^{*}\right),\left[\mathrm{Os}^{\text {III }}(\mathrm{tpm})(\mathrm{Cl})_{2}\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)(9)$, and trans- $\left[\mathrm{Os}^{\text {III }}(\mathrm{tpy})(\mathrm{Cl})_{2}-\right.$ $\left.\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)(\mathbf{1 0})$.

Materials. $\mathrm{CH}_{3} \mathrm{CN}$ (Burdick \& Jackson) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Mallinckrodt) were used as received. Deuterated solvents and isotopically labeled reagents were purchased from Cambridge Isotope Laboratories and used as received. TBAH was recrystallized three times from boiling EtOH and dried under vacuum at $120^{\circ} \mathrm{C}$ for 2 days. The salts $\left[\mathrm{N}(n-\mathrm{Bu})_{4}\right]-$ $\left[\mathrm{Os}(\mathrm{N})(\mathrm{Cl})_{4}\right],{ }^{5} \quad$ cis, cis $-\left[(\mathrm{bpy})_{2}(\mathrm{Cl}) \mathrm{Os}^{I I I}\left(\mathrm{~N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]\left(\mathrm{PF}_{6}\right)_{3} \quad(4),{ }^{6,7}$ trans-[Os $\left.{ }^{\text {III }}(\mathrm{tpy})\left(\mathrm{Cl}_{2}\right)_{2}\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)(\mathbf{1 0}),{ }^{9,10}$ trans, trans-[(tpy)(Cl)2 $\mathrm{Os}^{\text {IIII }}$ $\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $\left.)\right]\left(\mathrm{PF}_{6}\right)(5),{ }^{8,10}$ trans, trans- $\left[(\mathrm{tpy})(\mathrm{Cl})_{2} \mathrm{Os}^{[I I}\left({ }^{15} \mathrm{~N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}-\right.$

[^1]Table 1. Summary of Crystal Data, Intensity Collection, and Structure Refinement Parameters for trans, trans- $\left[(\right.$ tpy $)(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $\left.)\right]\left(\mathrm{BF}_{4}\right) \cdot \mathrm{DMF} \cdot \mathrm{H}_{2} \mathrm{O}(\mathbf{5})$

salt	5	radiation	Mo K $\alpha(\lambda=0.71073 \AA)$
formula	$\mathrm{Os}_{2} \mathrm{Cl}_{4} \mathrm{C}_{33} \mathrm{H}_{31} \mathrm{BF}_{4} \mathrm{~N}_{9} \mathrm{O}_{2}$	collection temp	$-150{ }^{\circ} \mathrm{C}$
molecular wt	1192.66	abs coeff μ, cm^{-1}	7.10
$a(\AA)$	8.6350(1)	$F(000)$	1132.38
b (\AA)	14.1004(2)	$2 \theta_{\text {max }}$ (deg)	50.0
$c(\AA)$	16.0212(1)	no. of total reflens	16877
α (deg)	103.328(1)	no. of unique reflens	6652
β (deg)	93.209(1)	no. of refined reflens	4126
γ (deg)	96.412(1)	merging R value	0.052
$V\left(\AA^{3}\right)$	1879.53(4)	no. of parameters	497
Z	2	$R(\%)^{a}$	4.8
crystal system	triclinic	$R_{\text {w }}(\%)^{b}$	3.9
space group	$P \overline{1}$	goodness of fit ${ }^{\text {c }}$	1.28
crystal size (mm)	$0.03 \times 0.04 \times 0.15$	deepest hole ($\left.\mathrm{e} / \AA^{3}{ }^{3}\right)$	-1.320
$d_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	2.107	highest peak (e / \AA^{3})	1.430
diffractometer	siemens CCD Smart		

$$
{ }^{a} R=\sum\left(\left|F_{\mathrm{o}}-F_{\mathrm{c}}\right|\right) / \sum\left|F_{\mathrm{o}}\right| \cdot{ }^{b} R_{\mathrm{w}}=\left[\sum\left(w\left|F_{\mathrm{o}}-F_{\mathrm{c}}\right|\right)^{2} / \sum w\left(F_{\mathrm{o}}\right)^{2}\right]^{1 / 2} \quad{ }^{c} \mathrm{GoF}=\left[\sum w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} /(\text { no. of reflections }- \text { no. of parameters })\right]^{1 / 2}
$$

(tpy) $]\left(\mathrm{PF}_{6}\right)\left(5^{*}\right),{ }^{8,10}\left[\mathrm{Os}^{\mathrm{III}}(\mathrm{tpm})\left(\mathrm{Cl}_{2}\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)(9),{ }^{9}\right.$ and $\mathrm{Os}^{\mathrm{VI}}(\mathrm{Tp})-$ $(\mathrm{Cl})_{2}(\mathrm{~N})(3)^{11}$ were prepared according to literature procedures. Cobaltocene, FcBF_{4}, and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ were purchased from Aldrich. KTp was purchaced from Alfa. The tpm ligand was prepared according to literature procedures. ${ }^{12,13}$

Physical Measurements and Instrumentation. Electronic absorption spectra were recorded on Hewlett-Packard 8452A diode array UVvis spectrophotometers in quartz cuvettes. FT-IR spectra were recorded as KBr pellets on a Mattson Galaxy series 5000 spectrophotometer at $4 \mathrm{~cm}^{-1}$ resolution. Solution IR spectra were collected by using deuterated solvents and a cell with CaF_{2} windows and 1.35 mm path length. Spectra in the near-IR region were recorded on a Cary model 14 spectrophotometer by using a matched pair of 2 mm path length quartz cells. Electrochemical measurements were made in $\mathrm{CH}_{3} \mathrm{CN}, 0.1$ M in TBAH as supporting electrolyte. A platinum disk was used for measurements as the working electrode. All potentials were referenced to the saturated sodium chloride calomel electrode (SSCE, 0.24 V vs NHE), unless otherwise noted, at room temperature and were uncorrected for junction potentials. The auxiliary electrode was a coil of platinum wire. Three compartment cells were used, with sintered glass disks separating the compartments containing reference, working, and auxiliary electrodes. Voltammetric experiments were performed with a PAR 173 galvanostat/poteniostat.

Spectral deconvolution of the near-IR bands for complexes 4, 5, 7, and $\mathbf{8}$ was conducted by using a subroutine in the commercial software package GRAMS 32.

Synthesis of Compounds and Salts. $\left[\mathrm{Os}^{\mathrm{VI}}(\mathbf{t p m})(\mathrm{Cl})_{2}(\mathbf{N})\right]\left(\mathrm{PF}_{6}\right)(2)$. A quantity of $\left[\mathrm{N}(n-\mathrm{Bu})_{4}\right]\left[\mathrm{Os}(\mathrm{N})(\mathrm{Cl})_{4}\right](1.00 \mathrm{~g}, 1.69 \mathrm{mmol})$ and tpm $(0.40 \mathrm{~g}, 1.86 \mathrm{mmol})$ were mixed together in $\mathrm{CH}_{3} \mathrm{OH}(50 \mathrm{~mL})$. The reaction mixture was stirred overnight, during which time the color turned to pink. $\mathrm{NH}_{4} \mathrm{PF}_{6}(1.00 \mathrm{~g})$ was added as a solid to the reaction mixture. An orange solid precipitated and was filtered off, washed with EtOH , and recrystallized from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$ and finally air-dried. Yield: $0.75 \mathrm{~g}(70 \%)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{OsPF}_{6}$ (mol wt 634.96) C, 18.94 H, 1.59 N, 15.46. Found: C, 19.29 ; H, 1.73; N, 15.61 . Infrared (cm^{-1}, in KBr$): v(\mathrm{Os} \equiv \mathrm{N}) 1074(\mathrm{vs}) ; v(\mathrm{tpm}) 1515(\mathrm{vs}), 1446$ (vs), 1409 (vs), 1285 (vs); $v(\mathrm{P}-\mathrm{F}) 835$ (vs).
$\left[\mathrm{Os}^{\mathrm{VI}}(\mathbf{t p m})(\mathbf{C l})_{2}\left({ }^{15} \mathrm{~N}\right)\right]\left(\mathbf{P F}_{6}\right)\left(\mathbf{2}^{*}\right)$. This salt was prepared by the same method starting with $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{Os}\left({ }^{15} \mathrm{~N}\right)(\mathrm{Cl})_{4}\right]$. Infrared $\left(\mathrm{cm}^{-1}\right.$, in KBr$)$: $v\left(\mathrm{Os} \equiv{ }^{15} \mathrm{~N}\right) 1053$ (vs).
$(\mathbf{t p m})\left(\mathrm{Cl}_{2}\right)_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathbf{O s}^{\mathrm{II}}(\mathbf{C l})_{2}(\mathbf{t p m}) \cdot \mathbf{2 H}_{2} \mathrm{O}(6)$. A quantity of $\mathbf{2}(200$ $\mathrm{mg}, 0.31 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. A stoichiometric amount of cobaltocene ($60 \mathrm{mg}, 0.31 \mathrm{mmol}$) was added slowly as a solid, which caused the color of the solution to turn brown. The reaction mixture was stirred at room temperature for 30 min . The solvent was

[^2]taken to dryness and the resulting brown solid material was treated with 100 mL of $\mathrm{CH}_{3} \mathrm{CN}$ to give a brown precipitate that was filtered off, washed with $3 \times 30 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{Et}_{2} \mathrm{O}$ and dried. Yield: 140 mg (87%). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{~N}_{14} \mathrm{Os}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (mol wt 1016.01): C, 23.67; H, 2.38; N, 19.33. Found: C, 23.79; H, 2.62; N, 17.73. Infrared $\left(\mathrm{cm}^{-1}\right.$, in KBr$): v(\mathrm{~N} \equiv \mathrm{~N}) 2040(\mathrm{w}) ; v(\mathrm{tpm}) 1511$ (vs), 1437 (vs), 1407 (vs), 1272 (vs).
 by the same method with $\left[\mathrm{Os}^{\mathrm{VI}}(\mathrm{tpm})(\mathrm{Cl})_{2}\left({ }^{15} \mathrm{~N}\right)\right]\left(\mathrm{PF}_{6}\right)\left(2^{*}\right)$ as the starting material. Infrared $\left(\mathrm{cm}^{-1}\right.$, in KBr$) v\left({ }^{15} \mathrm{~N} \equiv{ }^{15} \mathrm{~N}\right) 1972$ (w).
$\left[(t \mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{III}}(\mathbf{N})_{2} \mathrm{Os}^{\mathrm{II}}(\mathbf{C l})_{2}(\mathbf{t p m})\right]\left(\mathrm{BF}_{4}\right) \cdot \mathbf{2} \mathbf{H}_{2} \mathrm{O}$ (7). A quantity of $6(100 \mathrm{mg}, 0.10 \mathrm{mmol})$ was suspended in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ and FcBF_{4} (28 mg 0.10 mmol) was slowly added as a solid. The reaction mixture was stirred for 50 min . During this time the brown solid gradually disappeared and an olive green crystalline solid formed. This material was filtered off and washed with $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{Et}_{2} \mathrm{O}$. It was then recrystallized from $\mathrm{DMF} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$, filtered off, and air-dried. Yield: $77 \mathrm{mg}(71 \%)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{~N}_{14} \mathrm{Os}_{2} \mathrm{BF}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (mol wt 1103.02): C, 21.81; H, 2.20; N, 17.80. Found: C, 21.72; H, 2.40; N, 16.75. Infrared $\left(\mathrm{cm}^{-1}\right.$, in KBr$): v(\mathrm{~N} \equiv \mathrm{~N})$ 2029(vs); $v(\mathrm{tpm}) 1509$ (vs), 1440 (vs), 1409 (vs), 1276(vs); $v(\mathrm{~B}-\mathrm{F}) 1062$ (vs).
$\left[(t \mathbf{p m})(\mathbf{C l})_{2} \mathbf{O s}{ }^{\mathrm{III}}\left({ }^{15} \mathrm{~N}\right)_{2} \mathrm{Os}^{\mathrm{II}}(\mathbf{C l})_{2}(\mathbf{t p m})\right]\left(\mathrm{BF}_{4}\right)\left(7^{*}\right)$ was prepared by the same method with $($ tpm $)\left(\mathrm{Cl}_{2}\right)_{2} \mathrm{Ss}^{\mathrm{II}}\left({ }^{15} \mathrm{~N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})\left(6^{*}\right)$ as the starting material. Infrared $\left(\mathrm{cm}^{-1}\right.$, in KBr$): v\left({ }^{15} \mathrm{~N} \equiv{ }^{15} \mathrm{~N}\right) 1965$ (vs).
$\left[(\mathbf{T p})(\mathbf{C l})_{2} \mathrm{Os}^{\mathrm{III}}(\mathrm{N})_{2} \mathrm{Os}^{\left.\mathrm{II}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathbf{T p})\right]\left(\mathrm{Cp}_{2} \mathrm{Co}\right)(8) \text {. A quantity of } 3 \text { (60 }}\right.$ $\mathrm{mg}, 0.12 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. Cobaltocene (11.5 $\mathrm{mg}, 0.06 \mathrm{mmol}$) was added slowly as a solid with stirring. The color turned green immediately. The reaction mixture was stirred at room temperature for 30 min . The volume of the reaction mixture was reduced to 5 mL by rotary evaporation and 400 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added to precipitate an olive green compound, which was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}$. This material was recrystallized from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$ and air dried. Yield: $36 \mathrm{mg}(50 \%)$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{Cl}_{4} \mathrm{~N}_{14} \mathrm{~B}_{2} \mathrm{Os}_{2} \mathrm{Co}$ (mol wt 1167.02): C, 28.86; H, 2.59; N, 16.83. Found: C, 29.43; H, 2.61; $\mathrm{N}, 14.54$. Infrared $\left(\mathrm{cm}^{-1}\right.$, in KBr$) v(\mathrm{~N} \equiv \mathrm{~N})$ 2011(vs); $v(\mathrm{Tp}) 1627$ (vs), 1500 (vs), 1416 (vs), 1312 (vs), 1212 (vs); $v(\mathrm{~B}-\mathrm{H}) 2506$ (vs).
$\left[(\mathbf{T p})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{III}}\left({ }^{\mathbf{1 5}} \mathrm{N}\right)_{2} \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathbf{T p})\right]\left(\mathrm{Cp}_{2} \mathrm{Co}\right)\left(8^{*}\right)$. This salt was prepared by the same method starting with $\mathrm{Os}^{\mathrm{VI}}(\mathrm{Tp})(\mathrm{Cl})_{2}\left({ }^{15} \mathrm{~N}\right)$ as the starting material. Infrared $\left(\mathrm{cm}^{-1}\right.$ in KBr$): v\left({ }^{15} \mathrm{~N} \equiv{ }^{15} \mathrm{~N}\right) 1944$ (vs).

X-ray Structural Determination: Data Collection, Solution, and Refinement of the Structure. Single crystals of 5 were obtained by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $10: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{DMF}$ solution of the salt. Crystal data, intensity collection information, and structure refinement parameters for the structure are provided in Table 1. The structure was solved by direct methods. The remaining non-hydrogen atoms were located in subsequent difference Fourier maps. Empirical absorption corrections were applied with SADABS. The ORTEP plotting program was used to computer generate the structure shown in Figure 2. ${ }^{14}$

[^3]

Figure 2. ORTEP diagram (30% probability ellipsoids) of the cation in trans, trans-[(tpy)(Cl) $2 \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $\left.)\right]\left(\mathrm{BF}_{4}\right)(\mathbf{5})$.

Table 2. Selected Bond Lengths (\AA) and Angles (deg) for trans, trans-[(tpy) $(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $\left.)\right]\left(\mathrm{BF}_{4}\right) \cdot \mathrm{DMF} \cdot \mathrm{H}_{2} \mathrm{O}$ (5)

Bonds			
$\mathrm{Os}(1)-\mathrm{Cl}(1)$	$2.352(3)$	$\mathrm{Os}(2)-\mathrm{Cl}(3)$	$2.401(3)$
$\mathrm{Os}(1)-\mathrm{Cl}(2)$	$2.371(3)$	$\mathrm{Os}(2)-\mathrm{Cl}(4)$	$2.402(3)$
$\mathrm{Os}(1)-\mathrm{N}(1)$	$1.968(9)$	$\mathrm{Os}(2)-\mathrm{N}(2)$	$1.909(10)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.132(13)$	$\mathrm{Os}(2)-\mathrm{N}(31)$	$2.064(9)$
$\mathrm{Os}(1)-\mathrm{N}(11)$	$2.084(9)$	$\mathrm{Os}(2)-\mathrm{N}(37)$	$2.006(9)$
$\mathrm{Os}(1)-\mathrm{N}(17)$	$1.996(9)$	$\mathrm{Os}(2)-\mathrm{N}(43)$	$2.087(10)$
$\mathrm{Os}(1)-\mathrm{N}(23)$	$2.084(10)$	$\mathrm{Os}(1) \cdots \mathrm{Os}(2)$	$4.9726(7)$
$\operatorname{Os}(1) \cdots \mathrm{B}(1)$	6.22	$\mathrm{Os}(2) \cdots \mathrm{B}(1)$	6.74

| Angles | | | |
| :--- | ---: | :--- | ---: | ---: |
| $\mathrm{Os}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ | $171.5(9)$ | $\mathrm{Os}(2)-\mathrm{N}(2)-\mathrm{N}(1)$ | $172.1(9)$ |
| $\mathrm{Cl}(1)-\mathrm{Os}(1)-\mathrm{Cl}(2)$ | $177.6(1)$ | $\mathrm{Cl}(3)-\mathrm{Os}(2)-\mathrm{Cl}(4)$ | $179.0(1)$ |
| $\mathrm{Cl}(1)-\mathrm{Os}(1)-\mathrm{N}(1)$ | $92.6(3)$ | $\mathrm{Cl}(3)-\mathrm{Os}(2)-\mathrm{N}(2)$ | $91.8(3)$ |
| $\mathrm{Cl}(1)-\mathrm{Os}(1)-\mathrm{N}(11)$ | $88.0(3)$ | $\mathrm{Cl}(3)-\mathrm{Os}(2)-\mathrm{N}(31)$ | $88.3(3)$ |
| $\mathrm{CI}(1)-\mathrm{Os}(1)-\mathrm{N}(17)$ | $88.9(3)$ | $\mathrm{Cl}(3)-\mathrm{Os}(2)-\mathrm{N}(37)$ | $88.4(3)$ |
| $\mathrm{Cl}(1)-\mathrm{Os}(1)-\mathrm{N}(23)$ | $91.4(3)$ | $\mathrm{Cl}(3)-\mathrm{Os}(2)-\mathrm{N}(43)$ | $92.3(3)$ |
| $\mathrm{Cl}(2)-\mathrm{Os}(1)-\mathrm{N}(1)$ | $88.6(3)$ | $\mathrm{Cl}(4)-\mathrm{Os}(2)-\mathrm{N}(2)$ | $88.5(3)$ |
| $\mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{N}(11)$ | $89.8(3)$ | $\mathrm{C}(4)-\mathrm{Os}(2)-\mathrm{N}(31)$ | $90.7(3)$ |
| $\mathrm{Cl}(2)-\mathrm{Os}(1)-\mathrm{N}(17)$ | $89.8(3)$ | $\mathrm{Cl}(4)-\mathrm{Os}(2)-\mathrm{N}(37)$ | $91.4(3)$ |
| $\mathrm{Cl}(2)-\mathrm{Os}(1)-\mathrm{N}(23)$ | $90.3(3)$ | $\mathrm{Cl}(4)-\mathrm{Os}(2)-\mathrm{N}(43)$ | $88.6(3)$ |
| $\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(11)$ | $97.9(4)$ | $\mathrm{N}(2)-\mathrm{Os}(2)-\mathrm{N}(31)$ | $102.5(4)$ |
| $\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(17)$ | $177.5(4)$ | $\mathrm{N}(2)-\mathrm{Os}(2)-\mathrm{N}(37)$ | $178.3(4)$ |
| $\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(23)$ | $102.7(4)$ | $\mathrm{N}(2)-\mathrm{Os}(2)-\mathrm{N}(43)$ | $99.6(4)$ |
| $\mathrm{N}(11)-\mathrm{Os}(1)-\mathrm{N}(17)$ | $80.2(4)$ | $\mathrm{N}(31)-\mathrm{O}(2)-\mathrm{N}(37)$ | $79.2(4)$ |
| $\mathrm{N}(11)-\mathrm{Os}(1)-\mathrm{N}(23)$ | $159.4(4)$ | $\mathrm{N}(31)-\mathrm{Os}(2)-\mathrm{N}(43)$ | $157.9(4)$ |
| $\mathrm{N}(17)-\mathrm{Os}(1)-\mathrm{N}(23)$ | $79.2(4)$ | $\mathrm{N}(37)-\mathrm{Os}(2)-\mathrm{N}(43)$ | $78.7(4)$ |

Hydrogen atoms were included in calculated positions with thermal parameters derived from the atom to which they were bonded. All computations were performed by using the NRCVAX suite of programs. ${ }^{15}$ Atomic scattering factors were taken from a standard source ${ }^{16}$ and corrected for anomalous dispersion.

The crystal of $\mathbf{5}$ contains one molecule of dimethylformamide and one molecule of water per asymmetric unit. The final positional parameters, along with their standard deviations as estimates from the inverse matrix, tables of hydrogen atom parameters, anisotropic thermal parameters, and observed/calculated structure amplitudes are available as Supporting Information in a previous publication. ${ }^{8}$ Bond lengths and angles in $\mathbf{5}$ are given in Table 2 with the numbering scheme given in Figure 2.

Results

Synthesis. Irreversible electrochemical reduction of trans$\left[\mathrm{Os}^{\mathrm{VI}}(\mathrm{tpy})(\mathrm{Cl})_{2}(\mathrm{~N})\right]\left(\mathrm{PF}_{6}\right)(\mathbf{1})$ occurs at $E_{\mathrm{p}, \mathrm{c}}=-0.36 \mathrm{~V}$ vs SSCE (Table 3). Mild reducing agents, such as $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{HS}^{-}$, or

[^4]Table 3. UV-Vis, Electrochemical, and Infrared Data for Compounds and Salts $\mathbf{1 - 1 0}$

complex or salt	$\lambda_{\text {max }}, \mathrm{nm}\left(\epsilon, 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	solvent for cyclic voltammetry	$\begin{aligned} & E_{1 / 2}(\mathbf{1})(\mathrm{V}) \\ & (\mathrm{III}, \mathrm{II} / \mathrm{II}, \mathrm{II}) \end{aligned}$	$\begin{gathered} E_{1 / 2}(\mathbf{2})(\mathrm{V}) \\ (\mathrm{III}, \mathrm{III} / \mathrm{III}, \mathrm{II}) \end{gathered}$	other waves	$\begin{aligned} & \text { IR bands } \\ & \left(\mathrm{KBr}, \mathrm{~cm}^{-1}\right) \end{aligned}$
trans-[$\left.\mathrm{Os}^{\mathrm{VI}}(\mathrm{tpy})(\mathrm{Cl})_{2}(\mathrm{~N})\right]\left(\mathrm{PF}_{6}\right)(\mathbf{1})$	In $\mathrm{CH}_{3} \mathrm{CN}: 514$ (0.13), 366 (6.7),	$\mathrm{CH}_{3} \mathrm{CN}$			$-0.36{ }^{\text {b }}$	$1106 \nu(\mathrm{Os} \equiv \mathrm{N})^{c}$
	354 (8.5), 336 (8.7), 288 (14.8) ${ }^{a}$					$1076 \nu\left(\mathrm{Os} \equiv{ }^{15} \mathrm{~N}\right)^{c}$
$\left[\mathrm{Os}^{\mathrm{VI}}(\mathrm{tpm})(\mathrm{Cl})_{2}(\mathrm{~N})\right]\left(\mathrm{PF}_{6}\right)(\mathbf{2})$	$\begin{aligned} & \text { In } \mathrm{CH}_{3} \mathrm{CN}: ~ \\ & 250(14.5), 212(16.2), 270(14.5), \end{aligned}$	$\mathrm{CH}_{3} \mathrm{CN}$			$-0.47^{\text {b }}$	$1074 \nu(\mathrm{Os} \equiv \mathrm{N})$
$\mathrm{Os}^{\mathrm{VI}}(\mathrm{Tp})(\mathrm{Cl})_{2}(\mathrm{~N})(3)$	In $\mathrm{CH}_{3} \mathrm{CN}$: 454 (0.3), 240 (5.7),214 (5.9)	$\mathrm{CH}_{3} \mathrm{CN}$			$-0.98{ }^{\text {b }}$	$1066 \nu(\mathrm{Os} \equiv \mathrm{N})$
cis,cis-[(bpy $\left.)_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}{ }^{\mathrm{II}}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]\left(\mathrm{PF}_{6}\right)_{3}(\mathbf{4})$	In $\mathrm{CH}_{3} \mathrm{CN}: \sim 500$ (5), 378 (16), 291 (68), 248 (57)	$\mathrm{CH}_{3} \mathrm{CN}$	+0.56	+1.40		$2011 \nu(\mathrm{~N} \equiv \mathrm{~N})$
trans, trans-[(tpy)($\mathrm{Cl}_{2} 2_{2} \mathrm{Os}^{\text {III }}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ (tpy $\left.)\right]\left(\mathrm{PF}_{6}\right)(5)$	In $\mathrm{CH}_{3} \mathrm{CN}$: 678 (3.8), 506 (11.2),	$\mathrm{CH}_{3} \mathrm{CN}$	-0.05	+0.50		$2007 \nu(\mathrm{~N} \equiv \mathrm{~N})$
	480 (10.2), 322 (43.3), 282 (35.1),	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.00	+0.60		$1942 \nu\left({ }^{15} \mathrm{~N} \equiv{ }^{15} \mathrm{~N}\right)$
	270 (27.9), 234 (62.8) ${ }^{\text {d }}$	DMF	-0.10	+0.46		
$(\mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})(6)$	$\begin{aligned} & \text { In DMSO: } 476 \text { (10.0), } 436 \text { (10.4), } \\ & 386(17.2), 360(16.5), 280(18.1) \end{aligned}$	DMSO	+0.04	+0.67		$\begin{aligned} & 2040 v(\mathrm{~N} \equiv \mathrm{~N})^{e} \\ & 1976 v\left({ }^{15} \mathrm{~N} \equiv{ }^{15} \mathrm{~N}\right)^{e} \end{aligned}$
$\left[(\mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\text {III }}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\text {II }}(\mathrm{Cl})_{2}(\mathrm{tpm})\right]\left(\mathrm{BF}_{4}\right)(7)$	In DMSO: 534 (0.6), 470 (1.6),	DMSO	+0.12	+0.73		$\begin{aligned} & 2029 v(\mathrm{~N} \equiv \mathrm{~N})^{e} \\ & 1965 v\left({ }^{15} \mathrm{~N} \equiv{ }^{15} \mathrm{~N}\right)^{e} \end{aligned}$
	302 (16.8)					
$\left[(\mathrm{Tp})(\mathrm{Cl})_{2} \mathrm{Os}^{\text {III }}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{Tp})\right]\left(\mathrm{Cp}_{2} \mathrm{Co}\right)(8)$	$\begin{aligned} & \text { In } \mathrm{CH}_{3} \mathrm{CN}: 430(3.0), 314 \text { (27.4), } \\ & 264(60.3), 212(80.9) \end{aligned}$	$\mathrm{CH}_{3} \mathrm{CN}$	-0.17	+0.39	$-0.44{ }^{f}$	$2011 \nu(\mathrm{~N}=\mathrm{N})$
$\left[\mathrm{Os}^{\text {III }}(\mathrm{tpm})(\mathrm{Cl})_{2}\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)(9)$	In $\mathrm{CH}_{3} \mathrm{CN}$: 349 (1.6), 330 (7.3),	$\mathrm{CH}_{3} \mathrm{CN}$			$+1.39^{g}$	2289, $2332 \nu(\mathrm{C} \equiv \mathrm{N})$
	288 (12.3), 256 (10.6), 210 (17.9)				-0.09^{h}	
trans-[Os ${ }^{\text {III }}($ tpy $\left.)(\mathrm{Cl})_{2}\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)(\mathbf{1 0})$	In $\mathrm{CH}_{3} \mathrm{CN}: 616$ (0.4), 540 (1.2)	$\mathrm{CH}_{3} \mathrm{CN}$			$+1.37^{g}$	2256, $2213 \nu(\mathrm{C} \equiv \mathrm{N})$
	$516 \text { (3.5), } 488 \text { (2.5), } 456 \text { (3.2), }$				$+0.04{ }^{h}$	
	$\begin{aligned} & 438(3.1), 396(2.4), 354(\mathrm{sh}, 7.9), \\ & 318 \text { (19.4), } 230(3.6) \end{aligned}$					

cobaltocene, undergo rapid reactions (within seconds) with nitrido complexes $\mathbf{1}$ or $\mathbf{2}$, to give the $\mu-\mathrm{N}_{2}$ dimers trans, trans$($ tpy $)(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}{ }^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $)$ and $(\mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}-$ (tpm), respectively. They form by reduction to $\mathrm{Os}^{\mathrm{V}} \equiv \mathrm{N}$ followed by rapid coupling to give $\mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II} .}{ }^{8,9} E_{\mathrm{p}, \mathrm{c}}=-0.98 \mathrm{~V}$ for the $\mathrm{Os}^{\mathrm{VI} / \mathrm{V}}$ couple for $\mathbf{3}$ and cobaltocene was used as the reductant to give the mixed-valence salt $\left[(\mathrm{Tp})\left(\mathrm{Cl}_{2} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right)\right.\right.$ $\left.\mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{Tp})\right]\left(\mathrm{Cp}_{2} \mathrm{Co}\right)$ as the final product. Similar coupling reactions between $\mathrm{Os}^{\mathrm{VI}}$ nitrido complexes have been reported previously by Taube ${ }^{17}$ and Che. ${ }^{3,4}$ Chemical oxidation of trans,-trans-(tpy) $(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $)$ or $(\mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}$ $(\mathrm{Cl})_{2}(\mathrm{tpm})$ with Fc^{+}salts affords the mixed-valence ions trans, trans $-\left[(\text { tpy })(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\text { tpy })\right]^{+}(\mathbf{5})$ and $[($ tpm $)-$ $\left.(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})\right]^{+}(7)$, respectively, in good yields and ${ }^{15} \mathrm{~N}$ labeled dimers $5^{*}, \mathbf{6}^{*}, \mathbf{7 *}^{*}$, and $\mathbf{8}^{*}$, by using the corresponding ${ }^{15} \mathrm{~N}$ labeled nitridos. Chemical reduction of 5 with Cu^{0} affords trans, trans- $(\mathrm{tpy})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpy})$ quantitatively.

The dimer cis,cis-[(bpy) $\left.)_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]^{3+}$ (4) was prepared by electrochemical oxidation of $c i s-\left[\mathrm{Os}^{1 \mathrm{I}}(\mathrm{bpy})_{2}-\right.$ $\left.(\mathrm{Cl})\left(\mathrm{NH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)$ in $\mathrm{H}_{2} \mathrm{O}$, at pH 9.2 at a reticulated vitreous carbon electrode at $E_{\text {app }}=+0.65 \mathrm{~V}$ vs SSCE. The potential was then switched to +0.30 V for reduction of the $\mathrm{Os}^{\mathrm{III}}-\mathrm{Os}^{\mathrm{II}}$ form to $\mathrm{Os}^{\mathrm{II}}-\mathrm{Os}^{\mathrm{II}}$. Addition of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ caused the olive-green salt cis,cis-[(bpy $\left.)_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}{ }^{\mathrm{II}}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ to precipitate. It was purified by cation exchange chromatography by using 0.2 M NaCl as the eluant. 4 was prepared by $\left(\mathrm{NH}_{4}\right)_{2}{ }^{-}$ $\left[\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{NO}_{3}\right)_{6}\right]$ oxidation of the $\mathrm{Os}^{\mathrm{II}}-\mathrm{Os}^{\mathrm{II}}$ form. Details are given elsewhere. ${ }^{6,7}$

Molecular Structure of trans, trans-[(tpy)(Cl) $)_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathbf{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}-$ $\left.(\mathbf{C l})_{2}(\mathbf{t p y})\right]^{+}(\mathbf{5})$. Important features in this structure (Figure 2) include the nearly staggered tpy ligands with a dihedral angle of $\sim 74^{\circ}$ and the bent N_{2} bridge with $\mathrm{Os}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ and $\mathrm{Os}(2)-\mathrm{N}(2)-\mathrm{N}(1)$ angles of $171.5(9)^{\circ}$ and $172.1(9)^{\circ}$, respectively. A similar bending has been observed in several homoand heteronuclear μ - N_{2} dimers based on $\mathrm{W}-\mathrm{Zr},{ }^{18} \mathrm{Zr}-\mathrm{Zr},{ }^{19,20}$ $\mathrm{Ta}-\mathrm{Ta},{ }^{21} \mathrm{Fe}-\mathrm{Mo},{ }^{22}$ and $\mathrm{Nb}-\mathrm{Nb} .{ }^{23}$ In these cases bending is usually associated with the presence of a $\mathrm{M}-\mathrm{N}$ bond order higher than 1 and $\mathrm{N}-\mathrm{N}$ bond order lower than 3 implying significant electron donation to $\mu-\mathrm{N}_{2}$. In some examples the bridging N_{2} unit has been formally described as hydrazido (4), $\mathrm{N}_{2}{ }^{4-}$, with a $\mathrm{N}-\mathrm{N}$ single bond. ${ }^{21,23}$

This is not the case in $\mathbf{5}$. The $\mathrm{N}(1)-\mathrm{N}(2)$ bond length is 1.132(13) Å, only slightly longer than that of free $\mathrm{N}_{2}(1.0976(2) \AA)^{24}$ but much shorter than that in the complexes cited above, and similar to the $\mathrm{N}-\mathrm{N}$ distance found in a plethora of other binuclear complexes. ${ }^{25}$ The $\mathrm{Os}(1) \cdots \mathrm{Os}(2)$ distance across the bridge is $4.9726(7) \AA$.

The Os-N(bridge) bond lengths are slightly shorter than typical $\mathrm{Os}-\mathrm{N}$ single bonds. For example, $\mathrm{Os}-\mathrm{N}\left(\mathrm{NH}_{3}\right)$ is

[^5]$2.123(7)-2.139(6) \AA$ in $\left[\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Os}\left(\mathrm{N}_{2}\right) \mathrm{Os}\left(\mathrm{NH}_{3}\right)_{4}\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{5+}$. 3,4 More importantly, they are not equivalent with $\mathrm{Os}(1)-\mathrm{N}(1)=1.968(9) \AA$ and $\mathrm{Os}(2)-\mathrm{N}(2)=1.909(10) \AA$. There are two distinct sets of $\mathrm{Os}-\mathrm{Cl}$ bond lengths: "short" bonds, $\mathrm{Os}(1)-\mathrm{Cl}(1)=2.352(3) \AA$ and $\mathrm{Os}(1)-\mathrm{Cl}(2)=2.371-$ (3) \AA, consistent with $\mathrm{Os}^{\mathrm{III}}-\mathrm{Cl},{ }^{26}$ and "long" bonds, $\mathrm{Os}(2)-$ $\mathrm{Cl}(3)=2.401(3) \AA$ and $\mathrm{Os}(2)-\mathrm{Cl}(4)=2.402(3) \AA$, consistent with $\mathrm{Os}^{\mathrm{II}}-\mathrm{Cl}^{2} .^{27}$ The $\mathrm{BF}_{4}{ }^{-}$counterion is located $6.22 \AA$ from $\mathrm{Os}(1)$ and $6.74 \AA$ from $\mathrm{Os}(2)$.

On the basis of the $\mathrm{Os}-\mathrm{Cl}$ bond lengths and counterion placement in the lattice there are localized $\mathrm{Os}^{\mathrm{III}}(\mathrm{Os}(1))$ and $\mathrm{Os}^{\mathrm{II}}$ $(\mathrm{Os}(2))$ sites in 5 at least in the solid state. The $\mathrm{Os}^{\mathrm{II}}(\mathrm{Os}(2))-$ $\mathrm{N}\left(\mathrm{N}_{2}\right)$ bond length is shorter than $\mathrm{Os}^{\mathrm{III}}(\mathrm{Os}(1))-\mathrm{N}\left(\mathrm{N}_{2}\right)$ because of $\mathrm{Os}^{\mathrm{II}}-\mathrm{N}$ back-bonding. ${ }^{28}$

The Os -N (tpy) bond distance to the central tpy ring is 1.996(9) \AA at the $\mathrm{Os}^{\text {III }}$. The other two $\mathrm{Os}-\mathrm{N}($ tpy $)$ distances are 2.084(9) and 2.084(10) Å. The distances at $\mathrm{Os}^{\mathrm{II}}$ are comparable. The shortening of the "central" $\mathrm{M}-\mathrm{N}($ tpy $)$ bond is a characteristic of the structural chemistry of metal-terpyridine complexes (in the absence of trans influence ligands) and is shared by 5 (Table 2). ${ }^{29}$ It is a feature dictated by the geometrical constraints of tpy as a ligand and its inability to span the 180° required for a planar terdentate ligand. A representative example is $\mathrm{Os}^{\mathrm{III}}$ (tpy)$(\mathrm{Cl})_{3}$ in which the $\mathrm{Os}-\mathrm{N}($ tpy, central) bond length is 1.969 (3) \AA and the remaining two bond lengths are 2.077(3) and 2.075(3) $\AA .{ }^{30}$

UV-Vis Spectra. UV-vis absorption maxima and molar extinction coefficients are listed in Table 3. For the $\mu-\mathrm{N}_{2}$ complexes containing polypyridyl ligands intense $\mathrm{d} \pi\left(\mathrm{Os}^{\mathrm{II}}\right) \rightarrow$ $\pi^{*}($ bpy $)$ or $\mathrm{d} \pi\left(\mathrm{Os}^{\text {II }}\right) \rightarrow \pi^{*}$ (tpy) metal-to-ligand charge transfer (MLCT) bands appear in the visible. The spectra of 4 and 5 and their $\mathrm{Os}^{\mathrm{II}}-\mathrm{Os}^{\mathrm{II}}$ forms are shown in Figure 3. Band energies are shifted to lower energies for 5 compared to $\mathbf{4}$, due to the more electron rich coordination environment, consistent with Os ${ }^{\text {IIIIII }}$ redox potentials (see below). Due to spin-orbit coupling, ${ }^{31}$ the low-energy MLCT bands arise from transitions to excited state "triplets" which are actually of mixed spin character accounting for their intensities. ${ }^{32}$

The spectra of $\mathbf{6}, \mathbf{7}$, and $\mathbf{8}$ do not exhibit intense bands in the visible as do their polypyridyl analogues. Intense absorptions for the tpm complexes appear at higher energies which arise from a mixture of $\mathrm{d} \pi\left(\mathrm{Os}^{\mathrm{II}}\right) \rightarrow \pi^{*}(\mathrm{tpm})$ and $\pi \rightarrow \pi^{*}$ transitions. Bands in the same region have been reported for $\mathrm{Ru}^{\mathrm{II}}-$ tpm complexes. ${ }^{33}$
(26) $\mathrm{Os}^{\mathrm{III}}-\mathrm{Cl}$ bond lengths: (a) Bright, D.; Ibers, J. A. Inorg. Chem. 1969, 8, 1078. (b) Aslanov, L.; Mason, R.; Wheeler, A. G.; Whimp, P. O. J. Chem. Soc. Chem. Commun. 1979, 30. (c) Champness, N. R.; Levason, W.; Mould, R. A. S.; Pletcher, D.; Webster, M. J. Chem. Soc., Dalton Trans. 1991, 2777. (d) Champness, N. R.; Levason, W.; Pletcher, D.; Spicer, M. D.; Webster, M. J. Chem. Soc., Dalton Trans. 1992, 2201.
(27) Os ${ }^{\mathrm{II}}-\mathrm{Cl}$ bond lengths: (a) Chakravarty, A. R.; Cotton, F. A.; Schwotzer, W. Inorg. Chim. Acta 1984, 84, 179. (b) Cotton, F. A.; Diebold, M. P.; Matusz, M. Polyhedron 1987, 6, 1131. (c) Robinson, P. D.; Ali, I. A.; Hinckley, C. C. Acta Crystallogr. 1991, C47, 651. (d) Levason, W.; Champness, N. R.; Webster, M. Acta Crystallogr. 1993, C49, 1884.
(28) (a) Dilworth, J. R.; Richards, R. L. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Vol. 8, p 1073, and references therein. (b) George, T. A. In Homogeneous Catalysis with Metal Phosphine Complexes; Pingolet, L. H., Ed.; Plenum Press: New York, 1983; p 405. (c) Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589.
(29) (a) Beck, J.; Schweda, E.; Strähle, J. Z. Naturforsch. 1985, B40, 1073. (b) Bardwell, D. A.; Cargill Thompson, M. W.; McCleverty, J. C.; Ward, M. D. J. Chem. Soc., Dalton Trans. 1996, 873. (c) Constable, E. C. Metals and Ligand Reactivity; VCH Publishers: New York, 1996, and references therein.
(30) Demadis, K. D.; El-Samanody, E.-S.; Meyer, T. J.; White, P. S. Submitted for publication.
(31) Goodman, B. A.; Raynor, J. B. Adv. Inorg. Chem. Radiochem. 1970, 13, 135.

Figure 3. UV-vis spectra of cis,cis-[(bpy $)_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})-$ (bpy) $]^{2+}\left(---\right.$, in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$ and cis,cis $-\left[(\mathrm{bpy})_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})-\right.$ (bpy) $)^{3+}\left(-\right.$, in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)(\mathrm{A})$ and of trans, trans-(tpy) $\left(\mathrm{Cl}_{2}\right)_{2} \mathrm{Os}^{\mathrm{I}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}-$ $(\mathrm{Cl})_{2}(\mathrm{tpy})\left(--\right.$ and 2 inset, in DMF) and trans, trans-[(tpy)$(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $\left.)\right]^{+}\left(-\right.$, in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)(\mathrm{B})$.

Electrochemistry. Electrochemical data are presented in Table 3. In cyclic voltammograms of $\mathbf{1}$ in DMF, an irreversible $\mathrm{Os}^{\mathrm{vI}} / \mathrm{Os}^{\mathrm{V}}$ wave is observed at $\mathrm{E}_{p, c}=-0.36 \mathrm{~V}$ vs SSCE. Following the reductive scan, reversible waves corresponding to the $\mathrm{Os}^{\mathrm{III}}-\mathrm{Os}^{\mathrm{II}} / \mathrm{Os}^{\mathrm{II}}-\mathrm{Os}^{\mathrm{II}}$ and $\mathrm{Os}^{\mathrm{III}}-\mathrm{Os}^{\mathrm{II}} / \mathrm{Os}{ }^{\mathrm{III}}-\mathrm{Os}^{\mathrm{II}}$ couples of 5 appear at +0.21 and +0.77 V vs $\operatorname{SSCE}\left(\Delta E_{1 / 2}=560 \mathrm{mV}\right)$. Similar results were obtained for $\mathbf{2}$ and $\mathbf{3}$ with reduction of $\mathbf{2}$ at $\mathrm{E}_{p, c}=-0.47 \mathrm{~V}$ leading to $\mathrm{Os}\left(\mathrm{N}_{2}\right) \mathrm{Os}$ waves at $E_{1 / 2}=+0.04$ and $+0.67 \mathrm{~V}\left(\Delta E_{1 / 2}=630 \mathrm{mV}\right)$ and reduction at $\mathrm{E}_{p, c}=-0.98$ V of 3 leading to waves at $E_{1 / 2}=-0.17$ and $+0.39 \mathrm{~V}\left(\Delta E_{1 / 2}\right.$ $=560 \mathrm{mV})$. For $\mu-\mathrm{N}_{2}$ complex $4 E_{1 / 2}(1)=+0.56$, with a second wave appearing at $E_{\mathrm{p}, \mathrm{a}}=+1.40 \mathrm{~V}$, which is irreversible to scan rates up to $5 \mathrm{~V} / \mathrm{s}$. Exhaustive electrolysis past the irreversible wave gave $\left[\mathrm{Os}{ }^{\mathrm{III}}(\mathrm{bpy})_{2}(\mathrm{Cl})\left(\mathrm{NCCH}_{3}\right)\right]^{2+}$ based on a comparison of $E_{1 / 2}\left(\mathrm{Os}{ }^{\text {IIIIII }}\right)$ values. ${ }^{34}$ In $\mathrm{CH}_{3} \mathrm{CN}$ over several hours, 5 undergoes partial solvolysis to give trans-[Os ${ }^{\text {III }}(\mathrm{tpy})(\mathrm{Cl})_{2}-$ $\left.\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)(\mathbf{1 0})$ as shown by $E_{1 / 2}$ values for the $\mathrm{Os}^{\text {IV/III }}$ $(+1.37 \mathrm{~V})$ and $\mathrm{Os}^{\text {IIIIII }}(+0.04 \mathrm{~V})$ couples (Table 3$) .{ }^{10}$ Similar observations were made for 7. Multiple, bpy-based reductions are observed at -1.3 to -1.6 V consistent with literature values. ${ }^{35}$

Near-Infrared Spectra. Near-IR spectra for 4, 5, 7, and $\mathbf{8}$ are shown in Figure 4 with a spectral summary in Table 4. A

[^6]

Figure 4. Near-IR spectra for cis,cis-[(bpy $)_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})-$ (bpy) $)^{3+}, 4\left(\mathrm{~A}\right.$, in $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$, trans, trans $-\left[(\right.$ tpy $)\left(\mathrm{Cl}_{2}\right)_{2} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}-$ (tpy) $]^{+}, 5\left(\mathrm{~B}\right.$, in $\left.\mathrm{CD}_{3} \mathrm{CN}\right),\left[(\mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\text {III }}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})\right]^{+}, 7(\mathrm{C}$, in $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$, and $\left[(\mathrm{Tp})(\mathrm{Cl})_{2} \mathrm{Os}{ }^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{Tp})\right]^{-}, \mathbf{8}\left(\mathrm{D}\right.$, in $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$.
common pattern of five bands (labeled $\mathbf{I}-\mathbf{V}$) is observed with band \mathbf{V} obscured for $\mathbf{5}$ by a low-energy $\mathrm{Os}^{\mathrm{II}} \rightarrow$ tpy MLCT band at $11500 \mathrm{~cm}^{-1}$. A related band is observed at $11270 \mathrm{~cm}^{-1}$ in trans, trans- $(\mathrm{tpy})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $)$ (Figure 3B, inset). ${ }^{8}$ None of these bands are appreciably solvent dependent (Table 1 in Supporting Information). In addition, temperaturedependence studies from -38.5 to $25.0^{\circ} \mathrm{C}$ in $\mathrm{CD}_{3} \mathrm{CN}$, from 4600 to $12600 \mathrm{~cm}^{-1}$, revealed that the bands in $\mathbf{5}$ do not shift in energy, but do narrow and increase in intensity as the temperature is decreased.

The spectra were scaled as $\int \epsilon(\bar{v}) \mathrm{d} \bar{v} / \bar{v}$ and deconvoluted by use of the software package GRAMS 32. Results of the deconvolution procedure as band maxima ($E_{\text {abs }}$), molar extinction coefficients (ϵ), and bandwidths $\left(\Delta \bar{v}_{1 / 2}\right)$ are given in Table 4.

In the near-IR spectra of $\mathrm{Os}^{\mathrm{III}}$ complexes 9 and $\mathbf{1 0}$, lowintensity bands appear at ~ 4100 and $\sim 6700 \mathrm{~cm}^{-1}$ in $\mathrm{CD}_{3} \mathrm{CN}$ for the expected two $\mathrm{d} \pi \rightarrow \mathrm{d} \pi$ interconfigurational transitions at $\mathrm{Os}^{\text {III. }}{ }^{36}$

Infrared Spectra. (a) 1900-2100 cm^{-1} Region. $v(\mathrm{~N} \equiv \mathrm{~N})$ appears at 2011, 2007, 2029, and $2011 \mathrm{~cm}^{-1}$ in KBr in $\mu-\mathrm{N}_{2}$ complexes $\mathbf{4}, \mathbf{5}, \mathbf{7}$, and $\mathbf{8}$, consistent with literature values. ${ }^{37,38}$

[^7]Table 4. Spectral Parameters for Near-Infrared Bands ${ }^{a}$

salt	$\begin{gathered} E_{\mathrm{a}}, \mathrm{~cm}^{-1}\left(\epsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \\ \Delta \bar{v}_{1 / 2},{ }^{c} \mathrm{~cm}^{-1} \end{gathered}$				
	band I	band II	band III	band IV	band V
cis, cis-[(bpy $)_{2}(\mathrm{Cl}) \mathrm{Os}^{\text {III }}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}\left(\mathrm{Cll}(\mathrm{bpy})_{2}\right]\left(\mathrm{PF}_{6}\right)_{3}(4)$	3710 (1100)	5240 (1200)	6400 (370)	11300 (5200)	13400 (900)
	1200	780	2200	1900	2400
trans, trans $-\left[(t p y)(\mathrm{Cl})_{2} \mathrm{Os}^{\text {III }}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\text {II }}(\mathrm{Cl})_{2}(\right.$ tpy $\left.)\right]\left(\mathrm{PF}_{6}\right)(\mathbf{5})$	3160 (6100)	4740 (450)	5200 (640)	11300 (700)	11700 (1300)
	600	600	850	1650	1400
$\left[(t p m)(\mathrm{Cl})_{2} \mathrm{Os}^{\text {III }}\left(\mathrm{N}_{2}\right) \mathrm{Os}{ }^{\text {III }}(\mathrm{Cl})_{2}(\mathrm{tpm})\right]\left(\mathrm{BF}_{4}\right)(7)$	3460 (1500)	5200 (230)	7000 (100)	11400 (2100)	12800 (750)
	770	1100	1200	1300	2200
$\left[(\mathrm{Tp})(\mathrm{Cl})_{2} \mathrm{Os}^{\text {II }}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{Tp})\right](\mathrm{Cp} 2 \mathrm{Co})(8)$	3580 (3730)	5240 (930)	7070 (320)	11700 (5100)	13100 (1500)
	600	1100	1300	1400	2200
$\left[\mathrm{Os}^{\text {III }}(\mathrm{tpm})(\mathrm{Cl})_{2}\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)(9)$	4260 (180) ${ }^{\text {b }}$	6630 (120) ${ }^{\text {b }}$			
	300	930			
trans-[$\left.\mathrm{Os}^{\text {III}}(\mathrm{tpy})(\mathrm{Cl})_{2}\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)(\mathbf{1 0})$	4070 (65) ${ }^{\text {b }}$	6730 (120) ${ }^{\text {b }}$			
	300	930			

${ }^{a}$ In $\mathrm{CD}_{3} \mathrm{CN}$ except 7 which was measured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ due to solubility limitations. By spectral deconvolution and band shape analysis. ${ }^{b} d \pi$ $\rightarrow d \pi$ interconfigurational bands. ${ }^{c}$ Given in italics.

These assignments are reinforced by the shifts of $\sim 70 \mathrm{~cm}^{-1}$ in the ${ }^{15} \mathrm{~N}$-labeled dimers $\mathbf{4}^{*}, \mathbf{5}^{*}, \mathbf{7}^{*}$, and $\mathbf{8}^{*}\left(67 \mathrm{~cm}^{-1}\right.$ calculated).
$\nu(\mathrm{N} \equiv \mathrm{N})$ is also observed for the $\mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}$ complexes in KBr (Table 3), but the bands are broad and intensities are lower by a factor of 10 compared to the mixed-valence complexes (e.g., $\epsilon \sim 50$ for cis, cis-[(bpy) $\left.)_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ in $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$. The origin of the intensity for $v(\mathrm{~N} \equiv \mathrm{~N})$, which is a symmetrical stretch, is that the molecules are not totally symmetrical across the bridge. For $\mathbf{6}, v(\mathrm{~N} \equiv \mathrm{~N})$ is split in KBr with components appearing at 2088 and $2036 \mathrm{~cm}^{-1}$. The origin of this splitting is presumably the existence of different rotameric forms in the KBr pellet.
(b) $1400-1500 \mathbf{c m}^{-1}$ Region. v (bpy) and $v($ tpy $)$ ring stretching vibrations appear in this region. The energies and intensities of the v (bpy) vibrations are known to be sensitive to the Os oxidation state. ${ }^{39}$

For 4, v (bpy) bands appear at $1428,1436,1451,1469$, and $1496 \mathrm{~cm}^{-1}$ in $\mathrm{CD}_{3} \mathrm{CN}$. For 5, $v($ tpy $)$ bands appear at 1436,1449 , and $1486 \mathrm{~cm}^{-1}$ in $\mathrm{CD}_{3} \mathrm{CN}$. The spectrum of 4 in this region is shown in Figure 5 and, for comparison, the sum of the spectra for $c i s-\left[\mathrm{Os}{ }^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{Cl})\left(\mathrm{NCCH}_{3}\right)\right]^{2+}$ and $c i s-\left[\mathrm{Os}{ }^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{Cl})-\right.$ $\left.\left(\mathrm{NCCH}_{3}\right)\right]^{+}$. In an earlier report, $\nu($ bpy $)$ modes were used as markers for localization or delocalization in $\mathrm{Os}^{\mathrm{III}}-\mathrm{Os}^{\mathrm{II}}$ mixedvalence dimers. ${ }^{39}$
(c) $400-\mathbf{6 0 0} \mathrm{cm}^{-\mathbf{1}}$ Region. Bands appear at 459,503 , and $524 \mathrm{~cm}^{-1}$ for trans, trans- $($ tpy $)\left(\mathrm{Cl}_{2}\right)_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $)$ and at 455,497 , and $518 \mathrm{~cm}^{-1}$ for trans, trans-(tpy) $\left(\mathrm{Cl}_{2}\right)_{2} \mathrm{Os}^{\mathrm{II}}\left({ }^{15} \mathrm{~N}^{15} \mathrm{~N}\right)-$ $\mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $)$ in KBr . Bands appear at 545,530 , and $505 \mathrm{~cm}^{-1}$ for $(\mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})$, and at 528,512 , and 489 cm^{-1} for $(\mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left({ }^{15} \mathrm{~N}^{15} \mathrm{~N}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})$. Following the analysis and assignments of Kettle et al. ${ }^{38}$ these bands can be assigned to the $v_{6}\left(v_{\mathrm{OsN}_{2} \mathrm{Os}}, \mathrm{A}_{2 \mathrm{u}}\right), v_{10}\left(\delta_{\mathrm{OsN}_{2} \mathrm{Os}}, \mathrm{E}_{\mathrm{g}}\right)$, and v_{11} ($\delta_{\mathrm{OsN}_{2} \mathrm{Os}}, \mathrm{E}_{\mathrm{u}}$) modes of a linear (or nearly linear) $\mathrm{Os}-\mathrm{N}-\mathrm{N}-$ Os group. For $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Ru}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{5}\right]^{4+}$, bands for these modes were assigned at 502,520 , and $316 \mathrm{~cm}^{-1}$, respectively. ${ }^{38}$

[^8]

Figure 5. IR spectrum of cis,cis- $\left[(\mathrm{bpy})_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]^{3+}$ (4) (-) from 1400 to $1500 \mathrm{~cm}^{-1}$ in $\mathrm{CD}_{3} \mathrm{CN}$ compared to the average of the sum of spectra for cis- $\left[\mathrm{Os}^{\mathrm{III}}(\mathrm{bpy})_{2}(\mathrm{Cl})\left(\mathrm{NCCH}_{3}\right]^{2+}\right.$ and cis- $\left[\mathrm{Os}^{\mathrm{II}-}\right.$ $(\text { bpy })_{2}(\mathrm{Cl})\left(\mathrm{NCCH}_{3}\right]^{+}(---)$.

For trans, trans- $($ tpy $)(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $)$ the relatively high band energies suggest at least partial $\mathrm{Os}-\mathrm{N}$ multiple bond character. For the mixed-valence $\mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}$ forms, there is evidence for bands in the same region, but they are of low intensity. For $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{5}\right]^{5+}$ a band in the Raman spectrum at $150 \mathrm{~cm}^{-1}$ has been assigned to $\nu(\mathrm{Os}-$ $\left.\mathrm{N}\left(\mathrm{N}_{2}\right)\right) .{ }^{1}$

Discussion

In a composite sense, mixed-valence complexes 4, 5, 7, and 8 have some unusual properties. The major theme in this paper is to describe these properties and how they relate to electronic structure, localization vs delocalization, electronic coupling across $\mu-\mathrm{N}_{2}$, and the barrier to intramolecular electron transfer.

There is information about electronic coupling and electronic structure in the UV-visible spectra and electrochemical data. The MLCT absorption band patterns for cis,cis-[(bpy) $)_{2}(\mathrm{Cl}) \mathrm{Os}-$ $\left.\left(\mathrm{N}_{2}\right) \mathrm{Os}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]^{3+}(4), \quad$ cis, cis $-\left[(\mathrm{bpy})_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})-\right.$ $\left.(\mathrm{bpy})_{2}\right]^{2+}$, and $c i s-\left[\mathrm{Os}{ }^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{Cl})\left(\mathrm{NCCH}_{3}\right)\right]^{+}$are the same. This is illustrated in the line diagram in Scheme 1, which shows the systematic energy increases through the series. The shifts are of the same magnitude as the differences in $E_{1 / 2}\left(\mathrm{Os}^{\text {IIIIII }}\right)$, Table 3, consistent with the MLCT character of the transitions. ${ }^{32 f, g}$

The common $\mathrm{d} \pi \rightarrow \pi^{*}$ (bpy) MLCT band pattern suggests that there is no major perturbation in the $\mathrm{d} \pi$ orbitals due to electronic coupling across $\mu-\mathrm{N}_{2}$. The energy shifts are a measure of the increase in $\mathrm{d} \pi-\pi^{*}$ back-bonding at $\left[(\mathrm{bpy})_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{II}}\right]-$ as the sixth ligand is varied in the series: $\mathrm{CH}_{3} \mathrm{CN},\left[\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})-\right.$ $\left.(\text { bpy })_{2}\right]^{+}$, and $\left[\left(\mathrm{N}_{2}\right) \mathrm{Os}{ }^{\mathrm{II}}(\mathrm{Cl})(\text { bpy })_{2}\right]^{2+}$. This also explains the decrease in band energy of $v(\mathrm{~N} \equiv \mathrm{~N})$ in $\left[(b p y)_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right)\right.$ -

Scheme 1

$\mathrm{d} \pi_{3}-\pi\left(\mathrm{N}_{2}\right)-\mathrm{d} \pi_{3} \quad(\mathbf{d} \pi \rightarrow \mathbf{d} \pi)$

$\mathrm{d} \pi_{1}, \mathrm{~d} \pi_{2}-\pi^{*}\left(\mathrm{~N}_{2}\right)-\mathrm{d} \pi_{1}, \mathrm{~d} \pi_{2}$

Figure 6. Schematic energy level diagram for $\mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}$. The relative energy levels shown are those for $\left[(\mathrm{tpm})\left(\mathrm{Cl}_{2}\right)_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})\right]^{+}$ (7).
$\left.\mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]^{3+}(\mathbf{4})$, compared to cis, cis-[(bpy $)_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right)-$ $\left.\mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]^{2+}$. Similar arguments can be made in comparing the MLCT spectra of trans, trans- $(\operatorname{tpy})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{N}_{2}\right)$ $\mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $)$ and 5.

Another measure of interactions across the $\mu-\mathrm{N}_{2}$ bridge is $\Delta E_{1 / 2}\left(=E_{1 / 2}(2)-E_{1 / 2}(1)\right)$ for the $\mathrm{Os}^{\mathrm{III}}-\mathrm{Os}^{\mathrm{II}} / \mathrm{Os}^{\mathrm{II}}-\mathrm{Os}^{\mathrm{II}}$ and $\mathrm{Os}{ }^{\mathrm{II} /}$ Os ${ }^{\mathrm{II}}-\mathrm{Os}^{\mathrm{II}}$ couples. $\Delta E_{1 / 2}$ for dimers 5, 7, and $\mathbf{8}$ fall in the range $0.55-0.61 \mathrm{~V}$; for $\mathbf{4}, \Delta E_{1 / 2}$ is 0.84 V . For comparison, $\Delta E_{1 / 2}$ is 1.20 V for $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Os}\left(\mathrm{N}_{2}\right) \mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}\right]^{5+1}$ and 0.47 V for $\left[\left(\mathrm{NH}_{3}\right)_{5-}\right.$ $\left.\mathrm{Ru}\left(\mathrm{N}_{2}\right) \mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right]^{4+} .{ }^{1} \Delta E_{1 / 2}$ is related to ΔG° for the comproportionation equilibrium,

$$
\begin{equation*}
\mathrm{Os}^{\mathrm{III}}-\mathrm{Os}^{\mathrm{III}}+\mathrm{Os}^{\mathrm{II}}-\mathrm{Os}^{\mathrm{II}} \rightarrow 2 \mathrm{Os}^{\mathrm{III}}-\mathrm{Os}^{\mathrm{II}} \tag{1}
\end{equation*}
$$

by $\Delta G^{\circ}{ }_{\text {com }}($ in eV$)=-\Delta E_{1 / 2}$.
Description of Electronic Structure in the Mixed-Valence Complexes. For the mixed-valence μ - N_{2} complexes [$\left(\mathrm{CH}_{3}-\right.$ $\left.\mathrm{CN})\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\text {II }}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{5+3,4}$ and $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Os}^{\text {III }}-\right.$ $\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{5} 5^{5+1} v(\mathrm{~N} \equiv \mathrm{~N})$ is not observed or is of low intensity. This is consistent with delocalization and no permanent dipole across $\mu-\mathrm{N}_{2}$ on the IR time scale. By contrast, relatively intense $\nu(\mathrm{N} \equiv \mathrm{N})$ bands appear for $\mathbf{4}, 5,7$, and $\mathbf{8}(\epsilon \sim 300$ for $\mathbf{4}$ and 1220 for $\mathbf{5}, \epsilon=320$ for $\mathbf{7}$ and 400 for $\mathbf{8}$). The appearance of $v(\mathrm{~N} \equiv \mathrm{~N})$ provides evidence for a permanent dipole moment and an oxidation state marker for $\mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}$ on the infrared time scale. Based on the bandwidth at half-height and the uncertainty relation, $\Delta E \cdot \Delta t \leq \hbar$, it is possible to set a lower limit on the time scale for intramolecular electron transfer. For 5 with $\bar{v}_{1 / 2}=40 \mathrm{~cm}^{-1}, \Delta t \leq 1 \times 10^{-13} \mathrm{~s}$.

There is also evidence for localization in the crystal structure of $\mathbf{5}$ including short and long $\mathrm{Os}-\mathrm{N}$ (bridge) bonds, short and
long $\mathrm{Os}-\mathrm{Cl}$ bonds, and the asymmetrical disposition of the $\mathrm{BF}_{4}{ }^{-}$ counterion in the lattice. As shown by the appearance of $v(\mathrm{~N} \equiv \mathrm{~N})$ in both $\mathrm{CD}_{3} \mathrm{CN}$ and KBr , localization is not simply a solid-state effect.

Assuming localization, it is possible to assign the near-IR bands by using the schematic orbital diagram in Figure 6. In constructing the diagram, it was assumed that $\mathrm{d} \pi\left(\mathrm{Os}^{\mathrm{III}}\right)$ and $\mathrm{d} \pi$ (Os ${ }^{\text {II }}$) are premixed with $\pi\left(\mathrm{N}_{2}\right)$ and $\pi^{*}\left(\mathrm{~N}_{2}\right)$. These orbitals promote $\mathrm{d} \pi\left(\mathrm{Os}^{\mathrm{II}}\right)-\pi\left(\mathrm{N}_{2}\right)-\mathrm{d} \pi\left(\mathrm{Os}^{\text {II }}\right)$ and $\mathrm{d} \pi\left(\mathrm{Os}^{\text {III }}\right)-\pi^{*}\left(\mathrm{~N}_{2}\right)-\mathrm{d} \pi-$ ($\mathrm{Os}^{\text {II }}$) coupling across the bridge. Taking $\mathrm{Os}-\mathrm{N}_{2}-\mathrm{Os}$ as the z-axis (neglecting the slight divergence from 180°), $\mathrm{d} \pi_{1}\left(\mathrm{Os}^{\mathrm{II}}\right)$ and $\mathrm{d} \pi_{2}\left(\mathrm{Os}^{\mathrm{II}}\right)$ are largely $\mathrm{d}_{x z}, \mathrm{~d}_{y z}$ in character and $\mathrm{d} \pi_{3}\left(\mathrm{Os}^{\mathrm{II}}\right)$ is largely $\mathrm{d}_{x y}$. Spin-orbit coupling at Os ${ }^{\text {III }}$ imparts z character to all three $\mathrm{d} \pi\left(\mathrm{Os}^{\text {III }}\right)$ orbitals. ${ }^{40,41}$ In Figure 6, it is assumed that $\mathrm{d} \pi_{1}$ and $\mathrm{d} \pi_{2}$ are strongly mixed with $\pi^{*}\left(\mathrm{~N}_{2}\right)$ orbitals to give the series of molecular orbitals $\pi_{1}, \pi_{2}, \pi_{3}$, and π_{4}. The overlaps are illustrated in Figure 6. The $\mathrm{d} \pi_{3}$ orbitals are less strongly coupled. As illustrated by the overlaps in Figure 6, they have δ symmetry along the $\mathrm{Os}-\mathrm{N}-\mathrm{N}-\mathrm{Os}$ axis and coupling across the $\sim 5 \AA$ Os \cdots Os separation distance occurs by mixing with $\pi\left(\mathrm{N}_{2}\right)$.

In Figure 6 it is assumed that $\mathrm{d} \pi_{3}-\pi\left(\mathrm{N}_{2}\right)-\mathrm{d} \pi_{3}$ mixing is relatively weak, resulting in electronically coupled but discrete $\mathrm{d} \pi_{3}\left(\mathrm{Os}^{\text {III }}\right)$ and $\mathrm{d} \pi_{3}\left(\mathrm{Os}^{\mathrm{II}}\right)$ levels. The $\mathrm{d} \pi_{3}-\pi\left(\mathrm{N}_{2}\right)-\mathrm{d} \pi_{3}$ mixing destabilizes $\mathrm{d} \pi_{3}\left(\mathrm{Os}{ }^{\mathrm{III}}\right)$ and $\mathrm{d} \pi_{1}, \mathrm{~d} \pi_{2}-\pi^{*}\left(\mathrm{~N}_{2}\right)$ mixing stabilizes $\mathrm{d} \pi_{1}$ and $\mathrm{d} \pi_{2}$ at $\mathrm{Os}^{\mathrm{II}}$ relative to $\mathrm{d} \pi_{3}$. The latter is the origin of

[^9]the back-bonding effect that causes the decrease in $v(\mathrm{~N} \equiv \mathrm{~N})$ in $\mathrm{Os}^{\mathrm{III}}-\mathrm{Os}^{\mathrm{II}}$ compared to $\mathrm{Os}^{\mathrm{II}}-\mathrm{Os}^{\mathrm{II}}$.

On the basis of this model, three IT bands and two $\mathrm{d} \pi \rightarrow \mathrm{d} \pi$ interconfigurational bands at $\mathrm{Os}^{\mathrm{II}}$ are predicted. The latter are expected to appear in the near- $\mathrm{IR}^{8,36,39-42}$ and, in the tentative band assignments in Figure 6, are assigned as the two transitions at lowest energy. They appear at ~ 4200 and $\sim 6700 \mathrm{~cm}^{-1}$ in the $\mathrm{Os}^{\mathrm{III}}-\mathrm{NCCH}_{3}$ complexes ($\mathbf{9}$ and 10).

In $c i s-\left[(\mathrm{bpy})_{2}(\mathrm{Cl}) \mathrm{Os}^{\mathrm{III}}(\mathrm{pz}) \mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{5}\right]^{4+}$ electronic coupling causes the $\mathrm{d} \pi-\mathrm{d} \pi$ bands to shift to lower energy and gain intensity by mixing with the IT transitions. ${ }^{39,42}$ The orbital basis for the mixing is $\mathrm{d} \pi-\mathrm{d} \pi$ coupling across the pz bridge.

On the basis of this precedence, we assign the bands at 3160$3710 \mathrm{~cm}^{-1}$ and $4740-5240 \mathrm{~cm}^{-1}$ for $\mathbf{4}, 5,7$, and $\mathbf{8}$ to $\mathrm{d} \pi \rightarrow \mathrm{d} \pi$ transitions, although it must be admitted that these assignments are somewhat speculative. With this assignment, the decrease in energy and higher absorptivity compared to the $\mathrm{Os}^{\mathrm{III}}-\mathrm{NCCH}_{3}$ complexes in Table 4, is a consequence of electronic coupling across the bridge. More importantly, the energies of the proposed IT and $\mathrm{d} \pi \rightarrow \mathrm{d} \pi$ bands are internally consistent, at least for $\mathbf{4}$, 7 , and 8 , see below.

Taking $\left[(t p m)\left(\mathrm{Cl}_{2}\right)_{2} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}{ }^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})\right]^{+}(7)$ as the example, the near-IR bands can be assigned according to Figure 6 as follows: (1) The two lowest energy bands are $\mathrm{d} \pi \rightarrow \mathrm{d} \pi$ transitions decreased in energy and enhanced in intensity by orbital mixing across the bridge which imparts some IT character. (2) The lowest energy IT band, IT(1), appears at $\sim 7000 \mathrm{~cm}^{-1}$, see Table 4. It arises from the transition $\mathrm{d} \tau_{3}\left(\mathrm{Os}^{\text {II }}\right)$ $\rightarrow \mathrm{d} \pi_{3}\left(\mathrm{Os}^{\text {III }}\right)$. Its absorptivity is low because electronic coupling is by a δ interaction and $\mathrm{d} \pi_{3}-\pi\left(\mathrm{N}_{2}\right)-\mathrm{d} \pi_{3}$ mixing across the N_{2} bridge. A closely related orbital scheme has been proposed for $\left[(\mathrm{bpy})_{2}(\mathrm{Cl}) \mathrm{Os}{ }^{\mathrm{III}}(\mathrm{pz}) \mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{5}\right]^{4+} .{ }^{42}$ In this case the δ interaction is sufficiently weak that IT(1) is not observed, in part due to the longer $\mathrm{M}-\mathrm{M}$ distance for pyrazine as a bridge ($6.9 \AA$) compared to $\mathrm{N}_{2}(5.0 \AA) .{ }^{42}(3) \mathrm{IT}(2)$ and IT(3) appear at 11400 and $12800 \mathrm{~cm}^{-1}$. They are at higher energy because they involve charge transfer from $\mathrm{d} \pi_{1}\left(\mathrm{Os}^{\mathrm{II}}\right)$ and $\mathrm{d} \pi_{2}\left(\mathrm{Os}^{\mathrm{II}}\right)$, which are inner orbitals. These transitions give interconfigurational excited states, e.g., $\mathrm{d} \pi_{1}{ }^{2} \mathrm{~d} \pi_{2}{ }^{2} \mathrm{~d} \pi_{3}{ }^{2}\left(\mathrm{Os}^{\text {II }}\right)-\mathrm{d} \pi_{3}{ }^{1}\left(\mathrm{Os}^{\text {III }}\right) \rightarrow \mathrm{d} \pi_{1}{ }^{1} \mathrm{~d} \pi_{2}{ }^{-}$ ${ }^{1} \mathrm{~d} \pi_{3}{ }^{2}\left(\mathrm{Os}^{\mathrm{II}}\right)-\mathrm{d} \pi_{3}{ }^{2}\left(\mathrm{Os}^{\mathrm{II}}\right)$.

Based on Figure 6, the energies of the IT and $\mathrm{d} \pi \rightarrow \mathrm{d} \pi$ bands are related as $E_{\mathrm{IT}}(2) \approx E_{\mathrm{TT}}(1)+E_{\mathrm{d} \pi \rightarrow \mathrm{d} \pi}(1), E_{\mathrm{IT}}(3) \approx E_{\mathrm{IT}}(1)+$ $E_{\mathrm{d} \pi \rightarrow \mathrm{d} \pi}(2)$. For $\mathrm{IT}(2)$ and $\mathrm{IT}(3)$ the experimental values, 11400 and $12800 \mathrm{~cm}^{-1}$, are close to the calculated values of 10420 and $12160 \mathrm{~cm}^{-1}$. For IT(2), the absorptivity is greatly enhanced compared to IT(1) because of extensive $\mathrm{d} \pi_{1}, \mathrm{~d} \pi_{2}\left(\mathrm{Os}^{\mathrm{II}}\right)-\pi^{*}\left(\mathrm{~N}_{2}\right)$ mixing across the bridge. This mixing may greatly decrease the extent of charge transfer for IT(2) compared with IT(1).

Although the proposed assignments are internally consistent, the absence of a solvent dependence for the IT bands must still be explained. Because of their charge-transfer character, they are predicted to be solvent dependent. ${ }^{43}$ This is the case for cis,cis-[(bpy $\left.)_{2}(\mathrm{Cl}) \mathrm{Ru}^{\mathrm{III}}(\mathrm{pz}) \mathrm{Ru}^{\mathrm{II}}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]^{3+}$, for example, for which $\mathrm{Ru}^{\mathrm{II}} \rightarrow \mathrm{Ru}^{\text {III }}$ IT bands appear in the near infrared which are broad ($\Delta \bar{v}_{1 / 2}=4900 \mathrm{~cm}^{-1}$ in $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$ and vary with the solvent dielectric function, $1 / D_{\text {op }}-1 / D_{\mathrm{s}}{ }^{44} D_{\text {op }}$ and D_{s} are the optical and static dielectric constants of the solvent. By contrast, in a range of solvents including $\mathrm{CD}_{3} \mathrm{NO}_{2}\left(D_{\mathrm{op}}=1.909\right)$ and

[^10]$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\left(D_{\text {op }}=2.182\right)$, the near-IR band energies and shapes for 5 are relatively unchanged (Supporting Information, Table 1).

A related observation has been made for IT(2) and IT(3) in cis- $\left[(\mathrm{bpy})_{2}(\mathrm{Cl}) \mathrm{Os}{ }^{\mathrm{III}}(\mathrm{pz}) \mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{5}\right]^{4+}$. These are cross-bridge transitions and the absence of a solvent dependence was explained by invoking extensive $\mathrm{d} \pi\left(\mathrm{Os}^{\mathrm{III}}\right)-\pi, \pi^{*}(\mathrm{pz})-\mathrm{d} \pi\left(\mathrm{Ru}^{\mathrm{II}}\right)$ mixing, which greatly decreases the extent of charge transfer. ${ }^{45}$ IT(1) was not observed for this complex.

There may be another explanation for $\mathbf{4}, \mathbf{5}, \mathbf{7}$, and $\mathbf{8}$ based on time scale. IT(1) is expected to have charge-transfer character since $\mathrm{d} \pi-\pi\left(\mathrm{N}_{2}\right)-\mathrm{d} \pi$ coupling is moderate at best (vide infra). If the time scale for intramolecular $\mathrm{Os}^{\mathrm{III}} \leftrightarrow \mathrm{Os}^{\mathrm{II}}$ electron transfer is rapid on the time scale for the solvent motions coupled to electron transfer, the solvent polarization surrounding the ion will assume an average of those for $\mathrm{Os}^{\mathrm{III}}-\mathrm{Os}^{\mathrm{II}}$ and $\mathrm{Os}^{\mathrm{II}}-\mathrm{Os}^{\mathrm{III}}$. The solvent would no longer contribute to the optical or thermal barriers to electron transfer.

There are two contributions to λ_{0}, one from dipole reorientation, λ_{oo}, and one from collective translations, λ_{oi}, analogous to phonons in the solid state. The former dominates in polar solvents. ${ }^{43,46}$ From frequency-dependent dielectric and ultrafast transient absorption measurements in polar organic solvents, the time scales of the two motions are of the order $\sim 1 \mathrm{ps}$ and <0.1 ps, respectively. ${ }^{47}$

For Gaussian absorption bands it is possible to calculate the electronic resonance energy arising from $\mathrm{d} \pi-\pi, \pi^{*}\left(\mathrm{~N}_{2}\right)-\mathrm{d} \pi$ mixing by using an equation derived by Hush, ${ }^{48}$

$$
\begin{equation*}
H_{\mathrm{DA}}=\left(\frac{4.2 \times 10^{-4} \epsilon_{\max } \Delta \bar{v}_{1 / 2} E_{\mathrm{abs}}}{d^{2}}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

In this equation, $\epsilon_{\max }$ is the molar extinction coefficient (in M^{-1} cm^{-1}) at the absorption maximum, $E_{\text {abs }}$ (in cm^{-1}), for the spectrum scaled as $\int \epsilon(\bar{v}) \mathrm{d} \bar{v} / \bar{v}^{48,49} \Delta \bar{v}_{1 / 2}$ is the bandwidth at half-height (in cm^{-1}). d is the metal-metal separation distance (in \AA).

The spectra in Figure 4 are replotted as $\int \epsilon(\bar{v}) \mathrm{d} \bar{v} / \bar{v}$ in Figure 1 in the Supporting Information. A spectral deconvolution procedure was used to isolate the individual absorption bands and calculate $\epsilon_{\max }, E_{\mathrm{abs}}$, and $\bar{\nu}_{1 / 2}$ for each component (see Experimental Section). The band-shape parameters are given in Table 4. H_{DA} values for each IT band were calculated by using eq 2 , and total resonance energies from the sum are also listed in Table 5. In these calculations d was taken as $5.0 \AA$ from the crystal structure of $\mathbf{5}$. This is an upper limit because, as noted by Hupp, electronic coupling across the bridge

[^11]Table 5. Calculated Values for H_{DA} in cm^{-1} for 4, 5, 7, and 8. The Labels 1, 2, and 3 Correspond to Bands III, IV, and V in Table 4

complex	$H_{\text {DA }}(1), \mathrm{cm}^{-1}$	$H_{\text {DA }}(2), \mathrm{cm}^{-1}$	$H_{\text {DA }}(3), \mathrm{cm}^{-1}$	$H_{\text {DA }}($ total $), \mathrm{cm}^{-1}$	solvent
cis,cis-[(bpy $\left.)_{2}(\mathrm{Cl}) \mathrm{Os}^{\text {III }}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\text {II }}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]^{3+}(4)$	295	1369	697	2361	$\mathrm{CD}_{3} \mathrm{CN}$
trans, trans $-\left[(\mathrm{tpy})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\text { tpy })\right]^{+}$(5)	218	468	598	1284	$\mathrm{CD}_{3} \mathrm{CN}$
$\left[(\mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\text {III }}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})\right]^{+}(7)$	118	723	595	1436	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}^{a}$
$\left[(\mathrm{Tp})(\mathrm{Cl})_{2} \mathrm{Os}^{\text {III }}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{Tp})\right]^{-}$(8)	222	1184	852	2271	$\mathrm{CD}_{3} \mathrm{CN}$

${ }^{a}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ was used as the solvent due to the poor solubility of its salts in $\mathrm{CD}_{3} \mathrm{CN}$.
decreases the actual charge-transfer distance from the geometrical distance..$^{50} H_{\text {DA }}$ (total) values are in the range $1500-$ $2500 \mathrm{~cm}^{-1}$ with the most important contribution from $H_{\mathrm{DA}}(2)$. On the basis of this analysis, the resonance energy arising from $\mathrm{d} \pi_{3}\left(\mathrm{Os}^{\text {III }}\right)-\mathrm{d} \pi_{3}\left(\mathrm{Os}^{\text {II }}\right)$ coupling, $H_{\mathrm{DA}}(1)$, is relatively low, consistent with the proposed, largely $\delta-\delta$ nature of the interaction and small $\mathrm{d} \pi-\pi\left(\mathrm{N}_{2}\right)-\mathrm{d} \pi$ mixing.

The magnitudes of the H_{DA} values reveal that through-bridge electronic coupling is moderate, at best, smaller than typical reorganizational energies and insufficient to cause a major electronic perturbation. This is consistent with the conclusions reached in interpreting the UV-visible spectra of $\mathbf{4}$ and 5 . On the basis of the total $H_{\text {DA }}$ values, the contribution of electronic delocalization in the mixed-valence ions to $\Delta G^{\circ}{ }_{\text {com }}$ for the equilibrium in eq 1 is $2 H_{\mathrm{AD}}=0.58 \mathrm{eV}$ (out of 0.84 eV) for $\mathbf{4}$, 0.32 eV (out of 0.55 eV) for $\mathbf{5}, 0.36 \mathrm{eV}$ (out of 0.61 eV) for $\mathbf{7}$, and 0.56 eV (out of 0.56 eV) for $\mathbf{8}$. Electronic delocalization in the mixed-valence ion accounts for $>50 \%$ of the magnitude of $\Delta G^{\circ}{ }_{\text {com }}$ in these mixed-valence equilibria.

Intramolecular Electron Transfer. With the assumption of localized oxidation states, intramolecular electron transfer occurs between $\mathrm{Os}^{\mathrm{II}}$ and $\mathrm{Os}^{\mathrm{III}}$ across the $\mu-\mathrm{N}_{2}$ bridge with a characteristic rate constant, k_{ET}, and lifetime $\tau_{\mathrm{ET}}\left(=k_{\mathrm{ET}}{ }^{-1}\right)$. This is illustrated for the tpm dimer, 7 , in eq 3.

$$
\begin{align*}
& {\left[(\mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{~N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})\right]^{+} \xlongequal[k_{-\mathrm{ET}}]{k_{\mathrm{ET}}}} \\
& \quad\left[(\mathrm{tpm})(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{II}}\left(\mathrm{~N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}(\mathrm{tpm})\right]^{+} \tag{3}
\end{align*}
$$

The various spectroscopic markers provide estimates for τ_{ET}. From the $40 \mathrm{~cm}^{-1}$ bandwidth at half-height for $4, \tau_{\mathrm{ET}} \leq 0.1 \mathrm{ps}$. From the absence of a significant solvent dependence for the IT bands, $\tau_{\text {ET }}<1 \mathrm{ps}$.

There is a third marker relating time scale and electron transfer. It is based on the series of v (bpy) ring stretching modes in the mid-IR from 1400 to $1500 \mathrm{~cm}^{-1}$ shown in Figure $5 .{ }^{51}$ In cis,cis- $\left[(\mathrm{bpy})_{2}(\mathrm{Cl}) \mathrm{Os}(\mathrm{BL}) \mathrm{Os}(\mathrm{Cl})(\mathrm{bpy})_{2}\right]^{3+}$ there are separate sets of $v\left(\right.$ bpy) bands for $\mathrm{Os}^{\mathrm{II}}$ and $\mathrm{Os}^{\mathrm{III}}$ for $\mathrm{BL}=4,4^{\prime}-$ bpy, but for $\mathrm{BL}=\mathrm{pz}$, they are averaged. ${ }^{39}$ The same comparisons cannot be made for 4 because of the instability of the $\mathrm{Os}^{\mathrm{III}}-\mathrm{Os}^{\mathrm{III}}$ form toward loss of N_{2}. Nonetheless, by comparing the data with the average of the sum of spectra for cis-[Os ${ }^{\mathrm{III}}(\mathrm{bpy})_{2}(\mathrm{Cl})-$ $\left.\left(\mathrm{NCCH}_{3}\right)\right]^{2+}$ and cis- $\left[\mathrm{Os}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{Cl})\left(\mathrm{NCCH}_{3}\right)\right]^{+}$as in Figure 5, it is clear that the band positions in the mixed-valence ion are not simply the sum of the bands for $\mathrm{Os}^{\mathrm{II}}$ and $\mathrm{Os}^{\mathrm{II}}$.

Although the solvent and v (bpy) marker vibrations may be averaged, there is a residual barrier to intramolecular electron transfer. There is information about the barrier in the X-ray crystal structure and the differences in $\mathrm{Os}-\mathrm{N}$ and $\mathrm{Os}-\mathrm{Cl}$ bond

[^12]distances, which implicates low-frequency $\mathrm{Os}-\mathrm{N}$ and $\mathrm{Os}-\mathrm{Cl}$ vibrations as contributors to the barrier.

The low-energy orbital pathway for intramolecular electron transfer is $\mathrm{d} \pi_{3}\left(\mathrm{Os}^{\mathrm{II}}\right) \rightarrow \mathrm{d} \pi_{3}\left(\mathrm{Os}^{\mathrm{II}}\right)$. The optical analogue in the near-IR spectra is IT(1). In the classical limit, k_{ET} is given by,

$$
\begin{equation*}
k_{\mathrm{ET}}=v_{\mathrm{ET}} \exp -\left(\Delta G^{*} / R T\right) \tag{4}
\end{equation*}
$$

In eq $4 \nu_{\mathrm{ET}}$ is the frequency factor for electron transfer and ΔG^{*} the free energy of activation. λ is the reorganizational energy and includes the sum of λ 's for the coupled lowfrequency metal-ligand vibrations and $\lambda_{\mathrm{o}, \mathrm{i}}$ is the translational component of λ_{0},

$$
\begin{equation*}
\lambda=\lambda_{\mathrm{o}, \mathrm{i}}+\sum_{l} \mathrm{~S}_{l} \hbar \omega_{l} \tag{5}
\end{equation*}
$$

In eq 5 the S_{l} and ω_{l} are electron-vibrational coupling constants and quantum spacings and the sum is over the coupled vibrations, $l . \Delta G^{*}$ is related to λ and $H_{\mathrm{DA}}(1)$ as shown in eq $6 .{ }^{48,52}$

$$
\begin{equation*}
\Delta G^{*}=\frac{\lambda}{4}-H_{\mathrm{DA}}(1)+\frac{\left[H_{\mathrm{DA}}(1)\right]^{2}}{\lambda} \tag{6}
\end{equation*}
$$

The magnitude of $H_{\mathrm{DA}}(1)$ is sufficient that electron transfer occurs in the adiabatic regime and ν_{ET} is dictated by the dynamics of the coupled vibrations. ${ }^{53}$ By using $v_{\mathrm{ET}}=10^{13} \mathrm{~s}^{-1}$, eqs 4 and 6, the $E_{\text {abs }}$ values in Table 4 and $H_{\mathrm{DA}}(1)$ in Table 5, $k_{\mathrm{ET}}\left(\mathrm{CH}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)=1.7 \times 10^{10}(\mathbf{4}), 5.2 \times 10^{10}(\mathbf{5}), 3.8 \times$ $10^{9}\left(7\right.$, in DMSO), and $5.6 \times 10^{9}(\mathbf{8}) \mathrm{s}^{-1}$. These values approach but are too slow to be consistent with the time scale markers. ${ }^{54}$

This discrepancy can be explained by invoking an important contribution from quantum vibrational transitions below the barrier crossing (nuclear tunneling). The differences in $\mathrm{Os}-\mathrm{Cl}$ and $\mathrm{Os}-\mathrm{N}\left(\mathrm{N}_{2}\right)$ bond distances in the structure of trans, trans$\left[(\right.$ tpy $)(\mathrm{Cl})_{2} \mathrm{Os}^{\mathrm{III}}\left(\mathrm{N}_{2}\right) \mathrm{Os}^{\mathrm{II}}(\mathrm{Cl})_{2}($ tpy $\left.)\right]\left(\mathrm{PF}_{6}\right)(5)$ in Table 2 are small compared to equivalent changes in isolated $\mathrm{Os}^{\mathrm{II}}$ and $\mathrm{Os}^{\mathrm{II}}$ complexes: $\Delta r(\mathrm{Os}-\mathrm{Cl})=r\left(\mathrm{Os}^{\mathrm{II}}-\mathrm{Cl}\right)-r\left(\mathrm{Os}^{\mathrm{II}}-\mathrm{Cl}\right)=0.042$ \AA in 5 compared to $\Delta r(\mathrm{Os}-\mathrm{Cl})=0.080 \AA$ in cis [$\mathrm{Os}^{\mathrm{II}}(\mathrm{bpy})_{2^{-}}$ $\left.(\mathrm{Cl})\left(\mathrm{NCCH}_{3}\right)\right]^{+}$and cis- $\left[\mathrm{Os}{ }^{\text {III }}(\mathrm{bpy})_{2}(\mathrm{Cl})\left(\mathrm{NCCH}_{3}\right)\right]^{2+} .{ }^{5}$ The small bond distance changes are a consequence of electronic coupling

[^13]across the $\mu-\mathrm{N}_{2}$ bridge. The mixing of $\mathrm{d} \pi$ orbitals between $\mathrm{Os}^{\mathrm{II}}$ and Os ${ }^{\text {III }}$ causes a "blending" of oxidation states. This decreases the change in equilibrium displacement between oxidation states and enhances vibrational overlap between reactant and product vibrational levels low in the potential wells. There can be important contributions from vibrational levels well below the barrier crossing even for low-frequency $\mathrm{Os}-\mathrm{Cl}$ and $\mathrm{Os}-\mathrm{N}$ modes. For the $\mathrm{v}=0 \rightarrow \mathrm{v}^{\prime}=0$ transition between the lowest vibrational levels, the form of the vibrational overlap integral is,
\[

$$
\begin{equation*}
e^{-\mathrm{s}} \cdot \frac{S^{v}}{v!} \tag{7}
\end{equation*}
$$

\]

S is related to the reduced mass, M, and change in equilibrium displacement, ΔQ_{e}, by

$$
\begin{equation*}
S={ }^{1} /_{2}(M \omega / \hbar)\left(\Delta Q_{e}\right)^{2} \tag{8}
\end{equation*}
$$

The Localized-to-Delocalized Transition. One result of this study is to reveal the existence of a series of mixed-valence complexes whose properties include elements of both localized and delocalized behavior. The surrounding solvent orientational polarization is averaged and so are ν (bpy) marker vibrations, suggesting that intramolecular electron transfer is rapid on the time scale for their relaxation from the $\mathrm{v}=1$ vibrational level. ${ }^{57}$ On the other hand, the $v(\mathrm{~N} \equiv \mathrm{~N})$ vibrational marker and molecular structure reveal residual localization.

The localized-to-delocalized transition is driven by electronic coupling across the bridge. The effect of electronic delocaliza-

[^14]tion on the molecular motions coupled to electron transfer can be described as follows:
(a) In the limit that $2 H_{\mathrm{DA}}>\lambda$, the electronic delocalization energy exceeds λ. The odd electron is delocalized over both sites, as it is in $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Os}\left(\mathrm{N}_{2}\right) \mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}\right]^{5+}$.
(b) In $4,5,7$, and $\mathbf{8}, H_{\mathrm{DA}}$ (Table 5) is a small fraction of λ (Table 5), $<5 \%$ for IT(1). There is sufficient electronic coupling to "blend" Os ${ }^{\text {II }}$ and $\mathrm{Os}^{\text {III }}$ electronic character (as manifested in decreased $\mathrm{Os}-\mathrm{Cl}$ and $\mathrm{Os}-\mathrm{N}$ bond distance changes), but not to cause delocalization.
(c) The discrepancy between $v(\mathrm{~N} \equiv \mathrm{~N})$ and orientational motions in the solvent as oxidation state markers is a time scale effect. It is a manifestation of having multiple molecular motions with different time scales coupled to the same process. Intramolecular electron transfer is more rapid than solvent dipole reorganization but slower than the time scale for $v(\mathrm{~N} \equiv \mathrm{~N})$.
(d) Molecular vibrations can couple to the change in electronic structure associated with electron transfer in different ways. For the coupled $\mathrm{Os}-\mathrm{Cl}, \mathrm{Os}-\mathrm{N}$ modes, there are significant changes in equilibrium displacement, $(S \neq 0)$ and they create the barrier to electron transfer. The $\nu(\mathrm{bpy})$ vibrations act as "spectator modes" with frequency averaging providing a measure of electron-transfer time scale. ${ }^{57}$

Acknowledgments are made to the National Science Foundation under Grant Numbers CHE-9503738 and CHE-9321413 and to Cavan Fleming for experimental assistance. E-S.E-S. wishes to thank the Egyptian Government for the Data Collection Grant. We also want to thank Prof. Clifford P. Kubiak for sharing information prior to publication.

Supporting Information Available: Table 1 with near-IR data in various solvents, Table 2 with $K_{\text {com }}$ values, and Figure 1 with near-IR spectra plotted as $\int \epsilon(\bar{v}) \mathrm{d} \bar{v} / \bar{v}$ (PDF). See any current masthead page for Web access instructions.
JA982802O

[^0]: \dagger Nalco Chemical Company, Global Water Research, One Nalco Center, Naperville, IL 60563-1198.

 * Present address: Department of Chemistry, California Institute of Technology, Pasadena, CA 91125.
 (1) Richardson, D. E.; Sen, J. P.; Buhr, J. D.; Taube, H. Inorg. Chem. 1982, 21, 3136.
 (2) Magnuson, R. H.; Taube, H. J. Am. Chem. Soc. 1972, 94, 7213.
 (3) Che, C.-M.; Lam, H.-W.; Tong, W.-F.; Lai, T.-F.; Lau, T.-C. J. Chem. Soc. Chem. Commun. 1989, 1883.
 (4) Lam, H.-W.; Che, C.-M.; Wong, K.-Y. J. Chem. Soc., Dalton Trans. 1992, 1411.

[^1]: (5) Williams, D. S.; Coia, G. M.; Meyer, T. J. Inorg. Chem. 1995, 34, 586.
 (6) Coia, G. M. Ph.D. Dissertation, The University of North Carolina, Chapel Hill, 1996.
 (7) Coia, G. M.; Demadis, K. D.; Meyer, T. J. Manuscript in preparation.
 (8) Demadis, K. D.; Meyer, T. J.; White, P. S. Inorg. Chem. 1997, 36, 5678.
 (9) Demadis, K. D.; El-Samanody, E.-S.; Meyer, T. J.; White, P. S. Inorg. Chem. 1998, 37, 838.
 (10) Demadis, K. D.; Meyer, T. J.; White, P. S. Inorg. Chem. 1998, 37, 3610.

[^2]: (11) (a) Crevier, T. J.; Mayer, J. M. J. Am. Chem. Soc. 1998, 120, 5595. (b) Crevier, T. J.; Mayer, J. M. Angew. Chem., Int. Ed. Engl. 1998, 37, 1891.
 (12) Huckel, W.; Bretschneider, H. Ber. Chem. 1937, 9, 2024.
 (13) Byers, P. K.; Canty, A. J.; Honeyman, R. T. J. Organomet. Chem. 1990, 385, 421.

[^3]: (14) Johnson, C. K. ORTEP: A Fortran Thermal Ellipsoid Plot Program; Technical Report ORNL-5138; Oak Ridge National Laboratory: Oak Ridge, TN, 1976.

[^4]: (15) Gabe, E. J.; Le Page, Y.; Charland, J.-P.; Lee, F. L.; White, P. S. J. Appl. Crystallogr. 1989, 22, 384.
 (16) International Tables for X-ray Crystallography; Kynoch Press: Birmigham, U.K., 1974; Vol. IV.

[^5]: (17) Ware, D. C.; Taube, H. Inorg. Chem. 1991, 30, 4605.
 (18) Mizobe, Y.; Yokobayashi, Y.; Oshita, H.; Takahashi, T.; Hidai, M. Organometallics 1994, 13, 3764.
 (19) Fryzuk, M. D.; Haddad, T. S.; Mylvaganam, M.; McConville, D. H.; Retting, S. J. J. Am. Chem. Soc. 1993, 115, 2782
 (20) Cohen, J. D.; Mylvaganam, M.; Fryzuk, M. D.; Loehr, T. M. J. Am. Chem. Soc. 1994, 116, 9529
 (21) Schrock, R. R.; Wesolek, M.; Liu, A. H.; Wallace, K. C.; Dewan, J. C. Inorg. Chem. 1988, 27, 2050.
 (22) O'Donoghue, M. B.; Zanetti, N. C.; Davis, W. M.; Schrock, R. R. J. Am. Chem. Soc. 1997, 119, 2753.
 (23) Dilworth, J. R.; Henderson, R. A.; Hills, A.; Hughes, D. L.; Macdonald, C.; Stephens, A. N.; Walton, D. R. M. J. Chem. Soc., Dalton Trans. 1990, 1077.
 (24) Wilkinson, P. G.; Houk, N. B. J. Chem. Phys. 1956, 24, 528.
 (25) (a) Pelikán, R.; Boèa, R. Coord. Chem. Rev. 1984, 55, 55. (b) Henderson, R. A. Trans. Met. Chem. 1990, 15, 330. (c) Leigh, G. J. Acc. Chem. Res. 1992, 25, 177.

[^6]: (32) (a) Richter, M. M.; Brewer, K. J. Inorg. Chim. Acta 1991, 180, 125. (b) Johnson, S. R.; Westmoreland, D. T.; Caspar, J. V.; Barqawi, K. R.; Meyer, T. J. Inorg. Chem. 1988, 27, 3195. (c) Creutz, C.; Chou, M.; Netzel, T. L.; Okamura, M.; Sutin, N. J. Am. Chem. Soc. 1980, 102, 1309. (d) Pankuch, B. J.; Lacky, D. E.; Crosby, G. A. J. Phys. Chem. 1980, 84, 2061. (e) Lacky, D. E.; Pankuch, B. J.; Crosby, G. A. J. Phys. Chem. 1980, 84, 2068. (f) Kober, E. M.; Meyer, T. J. Inorg. Chem. 1982, 21, 3967. (g) Kober, E. M.; Caspar, J. V.; Sullivan, B. P.; Meyer, T. J. Inorg. Chem. 1988, 27, 4587.
 (33) (a) Llobet, A.; Hodgson, D. J.; Meyer, T. J. Inorg. Chem. 1990, 29, 3760. (b) Llobet, A.; Doppélt, P.; Meyer, T. J. Inorg. Chem. 1988, 27, 514. (34) Kober, E. M.; Marshall, J. L.; Dressick, W. J.; Sullivan, B. P.; Caspar, J. V.; Meyer, T. J. Inorg. Chem. 1985, 24, 2755.

[^7]: (35) (a) Roffia, S.; Ciano, M. J. Electroanal. Chem. 1979, 100, 809. (b) Sullivan, B. P.; Caspar, J. V.; Johnson, S. R.; Meyer, T. J. Organometallics 1984, 3, 1241. (c) Root, M. J.; Sullivan, B. P.; Meyer, T. J.; Deutsch, E. Inorg. Chem. 1985, 24, 2731.

[^8]: (36) (a) Sen, J.; Taube, H. Acta Chem. Scand. 1979, A33, 125. (b) Taube, H. J. Pure. Appl. Chem. 1979, 51, 901. (c) Creutz, C.; Chou, M. H. Inorg. Chem. 1987, 26, 2995. (d) Dubicki, L.; Ferguson, J.; Krautz, E. R.; Lay, P. A.; Maeder, M.; Taube, H. J. Phys. Chem. 1984, 88, 3940. (e) Aràneo, A.; Mercati, G.; Morazzoni, F.; Napoletano, T. Inorg. Chem. 1977, 16, 1196.
 (37) (a) Henderson, R. A.; Leigh, G. J.; Pickett, C. J. Adv. Inorg. Chem. Radiochem. 1983, 27, 197. (b) Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115. (c) Bee, M. W.; Kettle, S. F. A.; Powell, D. B. Spectrochim. Acta 1974, 30A, 1637.
 (38) Bee, M. W.; Kettle, S. F. A.; Powell, D. B. Spectrochim. Acta 1975, 31A, 89.
 (39) (a) Demadis, K. D.; Neyhart, G. A.; Kober, E. M.; Meyer, T. J. J. Am. Chem. Soc. 1998, 120, 7121. (b) Demadis, K. D.; Neyhart, G. A.; Kober, E. M.; Meyer, T. J.; White, P. S. Manuscript in preparation.

[^9]: (40) Kober, E. M. Ph.D. Dissertation, The University of North Carolina, Chapel Hill, 1982.
 (41) Kober, E. M.; Meyer, T. J. Inorg. Chem. 1983, 22, 1614.

[^10]: (42) Neyhart, G. A.; Timpson, C. J.; Bates, W. D.; Meyer, T. J. J. Am. Chem. Soc. 1996, 118, 3730.
 (43) Chen, P.; Meyer, T. J. Chem. Rev. 1998, 98, 1439.
 (44) (a) Callahan, R. W.; Meyer, T. J. Chem. Phys. Lett. 1976, 39, 82. (b) Callahan, R. W.; Keene, F. R.; Meyer, T. J.; Salmon, D. J. J. Am. Chem. Soc. 1977, 99, 1064.

[^11]: (45) (a) Gress, M. E.; Creutz, C.; Quicksall, C. O. Inorg. Chem. 1981, 20, 1522. (b) Creutz, C.; Chou, M. H. Inorg. Chem. 1981, 20, 1522. (c) Wishart, J. F.; Bino, A.; Taube, H. Inorg. Chem. 1986, 25, 3318.
 (46) (a) Marcus, R. A. In Tunneling in Biological Systems; Chance, B., DeVault, D. C., Frauenfelder, H., Marcus, R. A., Schrieffer, J. R., Sutin, N., Eds.; Academic Press: New York, 1979; p 109. (b) Marcus, R. A. J. Chem. Phys. 1956, 24, 979. (c) Marcus, R. A. J. Chem. Phys. 1956, 24, 966.
 (47) (a) Dogonadze, R. R.; Kalman, E.; Kornyshev, A. A.; Ulstrup, J., Eds. The Chemical Physics of Solvation, Part. A; Elsevier Science Publishers B.V.: Amsterdam, 1985. (b) Ulstrup, J. Charge-Transfer processes in Condensed Media. Lecture Notes in Chemistry; Springer-Verlag: New York, 1979; Vol. 10. (c) Böttcher, C. J. F. Theory of Electric Polarization; Elsevier Publishing Co.: New York, 1952. (d) Fröhlich, H. Theory of Dielectrics; Oxford University Press: Oxford, 1949. (e) Cole, R. H. In Molecular Liquids-Dynamics and Interactions; Barnes, A. J., et al., Eds.; D. Reidel Publishing Co.: New York, 1984; p 59.
 (48) (a) Hush, N. S. Prog. Inorg. Chem. 1967, 8, 391. (b) Hush, N. S. Electrochim. Acta 1968, 13, 1005. (c) Creutz, C. Prog. Inorg. Chem. 1983, 30, 1.
 (49) Reimers, J. R.; Hush, N. S. Inorg. Chem. 1990, 29, 3686.

[^12]: (50) Hupp, J. T.; Dong, Y.; Blackburn, R. L.; Lu, H. J. Phys. Chem. 1993, 97, 3278.
 (51) (a) Omberg, K. M.; Schoonover, J. R.; Treadway, J. A.; Leasure, R. M.; Dyer, R. B.; Meyer, T. J. J. Am. Chem. Soc. 1997, 119, 7013. (b) Mallick, P. K.; Danzer, G. D.; Strommen, D. P.; Kincaid, J. R. J. Phys. Chem. 1988, 92, 5628. (c) Strommen, D. P.; Mallick, P. K.; Danzer, G. D.; Lumpkin, R. S.; Kincaid, J. R. J. Phys. Chem. 1990, 94, 1357.

[^13]: (52) (a) Hush, N. S. In Mixed-Valence Compounds; Brown, D. B., Ed.; Reidel Publishing Company: Dordrecht, 1980; p 151. (b) Cribb, P. H.; Nordholm, S.; Hush, N. S. in Tunneling in Biological Systems; Chance, B., DeVault, D. C., Frauenfelder, H., Marcus, R. A., Schrieffer, J. R., Sutin, N., Eds.; Academic Press: New York, 1979; p 139.
 (53) (a) Marcus, R. A. Annu. Rev. Phys. Chem. 1966, 15, 155. (b) Marcus, R. A.; Sutin, N. Biophys. Biochim. Acta 1985, 811, 265. (c) Sutin, N. Prog. Inorg. Chem. 1983, 30, 411. (d) Newton, M. D.; Sutin, N. Annu. Rev. Phys. Chem. 1984, 35, 437. (e) Sutin, N. Acc. Chem. Res. 1982, 15, 275. (f) Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599. (g) Hush, N. Coord. Chem. Rev. 1985, 64, 135. (h) Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996, 100, 13148.
 (54) If band I were the correct assignment for IT(1), $k_{\mathrm{ET}}=4.0 \times 10^{11}$ s^{-1}, for 4 , which is also too slow to be consistent with the time scale marker. This assignment is also consistent with the energy relationships in Figure 6 if bands II and III are assigned as the $\mathrm{d} \pi \rightarrow \mathrm{d} \pi$ transitions.
 (55) $r(\mathrm{Os}-\mathrm{Cl})=2.4199(6) \AA$ in cis-[Os $\left.{ }^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{Cl})\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)^{10}$ and $r(\mathrm{Os}-\mathrm{Cl})=2.332(3) \AA$ in $c i s-\left[\mathrm{Os}^{\mathrm{III}}(\mathrm{bpy})_{2}(\mathrm{Cl})\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2} .{ }^{56}$

[^14]: (56) Demadis, K. D.; Meyer, T. J.; White, P. S. Unpublished results.
 (57) (a) Ito, T.; Hamaguchi, T.; Nagino, H.; Yamaguchi, T.; Washington, J.; Kubiak, C. P. Science 1997, 277, 660. (b) Kubiak, C. P. Personal communication.

